
v»

Prime Computer, Inc.

p]
DOC4029-4LA
FORTRAN 71[
Reference Guide
Revision 19.4

v P

■*. «■

;4'm%

-

pa

tiLJ^J-UlTUilillJlli

" ^ y ^ :
*rrtr

. ^ M ^ ■ ^

\ V

^&

f f

FORTRAN 77
Reference Guide

Fourth Edition

Evelyn Burns

Updated for Rev. 21.0
by

J. Ornstein and D. Laukaitis

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Master Disk
Revision Level 21.0 (Rev. 21.0).

Prime Computer, Inc.
Prime Park

Natick, Massachusetts 01760

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computerr Inc.
Prime Computer, Inc., assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
l i cense .

Copyright © 1985 by Prime Computer, Inc. All rights reserved.

PRIME, PRIME, PRIMDS, and the PRIME logo are registered trademarks of
Prime Computer, Inc. DISCOVER, INFO/BASIC, INFORM, MIDAS, MIDASPLUS,
PERFORM, Prime INFORMATION, PRIME/SNA, PRIMELINK, PRIMENET, PRIMEWAY,
PRIMIX, PRISAM, PST 100, EP25, PT45, PT65, PP200, PW153, IW200, HV250,
RIN3NET, SIMPLE, 50 Series, 400, 750, 850, 2250, 2350, 2450, 2550,
2650, 2655, 2755, 6350, 6550, 9650, 9655, 9750, 9755, 9950, 9955, and
9955II are trademarks of Prime Computer, Inc.

PRINTIN3 HISTORY

First Edition (IDR4029) January 1980 for Release 17.0
Second Edition (DOC4029-183) January 1983 for Release 18.3
Third Edition (DOC4029-192) June 1983 for Release 19.2
Fourth Edition (DOC4029-4LA) April 1985 for Release 19.4
Update 1 (UPD4029-41A) August 1986 for Release 20.2
Update 2 (UHM029-42A) July 1987 for Release 21.0

Editorial: Margaret Hill, Bill Modlin
Project Support: Margaret Taft, Len Brums
Illustration: Mingling Chang
Production: Judy Gordon

HUNTING HISTORY — FORTRAN 77 Reference Guide

Edition Date Number Software Release

First Edition January, 1980 IDR4029 17.0
Second Edition January, 1982 DOC4029-183 18.3
Third Edition June, 1983 DOC4029-192 19.2
Fourth Edition April 1985 DOC4029-4LA 19.4

In document numbers, L indicates loose-leaf. This book is also
available in perfect-bound form, as DOC4029-4PA.

CUSTOMER SUPPORT CENTER

Prime provides the following toll-free numbers for customers in the
United States needing service:

1-800-322-2838 (within Massachusetts) 1-800-541-8888 (within Alaska)
1-800-343-2320 (within other states) 1-800-651-1313 (within Hawaii)

f£W TO ORDER TECHNICAL DOCUMENTS

Obtain an order form, a catalog, and a price list from one of the
following:

Inside U.S.

Software Distribution
Prime Computer, Inc.
74 New York Ave.
Framingham, MA 01701
(617) 879-2960 X2053

Outside U.S.

Contact your local Prime
subsidiary or distributor.

ABOUT THIS BOOK

PART I — OVERVIEW

INTRODUCTION TO F77

Contents

D e fi n i t i o n s 1-1
Fortran 77 1-2
New Features in FORTRAN 77 1-2

Data Declaration Capabilities 1-2
Execution-time Capabilities 1-3
Subprogram Capabilities 1-3
Input/Output Capabilities 1-4

Prime Extensions to FORTRAN 77 1-4
Prime F77 Restrictions 1-5
Interface to Other Languages 1-5
F77 and Prime Utilities 1-6

Forms Management System
(FORMS) 1-6

Multiple Index Data Access
System (MIDASPLUS) 1-7

Prime's Recoverable Indexed
Sequential Access Method
(PRISAM) 1-7

The Condition-handling Mechanism 1-8

RTRAN 77 TERMS AND CONCEPTS

D e fi n i t i o n s 2-1
FORTRAN 77 Character Set 2-2
Line Format 2-3

Comments 2-4
Statements 2-4
Inser ts 2-4

Data Types 2-5
INTEGER Data 2-7a
Octal Constants 2-7a
Hexadecimal Constants 2-7a
REAL Data 2-8
DOUBLE PRECISION Data 2-8
REAL*16 Data 2-8
COMPLEX Data 2-8
C0MPLEX*16 Data 2-9
LOGICAL Data 2-9
CHARACTER Data 2-9

Hollerith Constants
Operands

Constants
Parameters
Var iables
Arrays
Referencing Arrays

Expressions
Arithmetic Expressions
Character Expressions
Relational Expressions
Logical Expressions

Type Conversion
Logical Conversion
Arithmetic Conversion

Program Organization in FORTRAN 77
Program Unit
Main Program
Subprograms
Organization Considerations
Size Considerations

PART II — PRIME F77 LANGUAGE REFERENCE

SPECIFICATION STATEMENTS

PROGRAM Statement 3-2
IMPLICIT Statement 3-2
Type Statements 3-3

Numeric Type Declaration
Statements 3-4

Character Type Declaration
Statements 3-6

DIMENSION Statement 3-9
COMMDN Statement 3-11
EQUIVALENCE Statement 3-13
DATA Statement 3-15
PARAMETER Statement 3-16
EXTERNAL Statement 3-17
SHORTCALL Statement 3-18
SAVE Statement 3-19
INTRINSIC Statement 3-19
BLOCK DATA Statement 3-20
INCLUDE Statement 3-21
NAMELIST Statement 3-23
Compiler Control Directives 3-23

NO LIOT Statement 3-23
LIST Statement 3-24
FULL LIST Statement 3-24
SINSERT Statement 3-24

4 ASSIGNMENT STATEMENTS

Ari thmetic Assignment Statement 4-2
Log ica l Ass ignmen t S ta temen ts 4 -5
Character Assignment Statement 4-5
A s s i g n S t a t e m e n t 4 - 6

5 CONTROL STATEMENTS

G O T O S t a t e m e n t s 5 - 2
A s s i g n e d G O TO S t a t e m e n t 5 - 2
The Computed GO TO Statement 5-2
Unconditional GO TO Statement 5-3

I F S t a t e m e n t s 5 - 4
A r i t h m e t i c - I F S t a t e m e n t 5 - 4
L o g i c a l - I F S t a t e m e n t 5 - 5
B l o c k - I F S t r u c t u r e 5 - 6

D O S t a t e m e n t 5 - 9
Execution of a DO Statement 5-10
Execution of the Range

o f D O S t a t e m e n t s 5 - 1 1
I t e r a t i o n C o n t r o l 5 - 1 1
Nested Loops and Transfer

o f C o n t r o l 5 - 1 2
Restrictions on Transfer

o f C o n t r o l 5 - 1 2
FTN Compatibility of DO Loops 5-13
D O W H I L E S t a t e m e n t 5 - 1 4
Execution of a DO WHILE Statement 5-15
N e s t e d D O W H I L E L o o p s 5 - 1 6
E N D D O S t a t e m e n t 5 - 1 6
C O N T I N U E S t a t e m e n t 5 - 1 6
S T O P S t a t e m e n t 5 - 1 7
P A U S E S t a t e m e n t 5 - 1 7
E N D S t a t e m e n t 5 - 1 8

6 INPUT/OUTPUT STATEMENTS, EATA STORAGE, AND FILE TYPES

F77 Data Storage
Types of Records
Record Lengths
Types of File Access
■types of Files
Internal Files

Editing F77 Files
Increasing Maximum Record Length
Files and Programs

Assigning a Device
Opening a File on a File Unit

File Operations
File Control Statements

OPEN Statement
CLOSE Statement
INQUIRE Statement

Device Control Statements
BACKSPACE Statement
REWIND Statement
ENDFILE Statement

Data Transfer Statements
How a Data Transfer Statement

Works
READ Statement
WRITE Statement
PRINT Statement

List-directed I/O
Del imi ters
Repeat Counts

Input/Output Errors
Namelist-directed I/O

Namelist Input
Namelist Output
Input Groups
Inputting Arrays With Namelist
Errors When Using Namelist
Restriction on Namelist

Summary of Statement Syntax

/ FORMAT STATEMENTS

Format Statement
Format and I/O List Interaction
Format List Rescanning
Field Descriptors

Numeric Descriptors
Hexadecimal and Octal

Field Descriptors
Nonnumeric Descriptors

Edit-control Descriptors
Scale Factors (P)
Sign Control Editing (SP,SS,S)
Blank Control Editing (BN,BZ)
Positional Editing (T)
Conditional Output
Record Skipping

8 SUBROUTINES AND FUNCTIONS

F77 Intrinsic Functions
Intrinsic Function Tables
Referencing an Intrinsic

Function
Generic and Specific Functions
Intrinsic Functions as

Arguments
Long and Short Integer

Arguments to Intrinsic
Functions

Statement Functions 8-21
External Functions 8-22
Subroutines 8-23

Using the SUBROUTINE Statement 8-25
Subroutine Libraries 8-26
Recursion 8-27
Number of Arguments 8-27

Block Data Subprogram 8-27
Secondary Entry Points 8-28
Alternate Returns 8-29
Subprogram Arguments 8-31

Adjustable Subprogram Elements 8-31
Adjustable Character Functions 8-31
Adjustable Character Arguments 8-31
Assumed-size Arrays 8-32
Adjustable Array Dimensions 8-32
Boundary Spanning Arrays as

Arguments 8-33
Character Arrays as Arguments 8-34
Subprograms as Arguments 8-34

PART III — WORKING WTEH PRIME F77

COMPILING YOUR PROGRAM

Compiling an F77 Program
Invoking and Specifying

Options to the Compiler
Compiler Error Messages
End-of-Compilation Message

Compiler Options

LINKING AND EXECUTING YOUR PROGRAM

BIND
Using BIND

Using BIND Interactively
Using BIND From the Command

Line
Basic BIND Commands

RESUME

10-1
10-2
10-2

10-3
10-4
10-8

11 FINDING AND CORRECTING RUNTIME ERRORS

H o w t o U s e t h e D e b u g g e r 11 - 2
E n t e r i n g t h e D e b u g g e r 1 1 - 2

Running Your Program Within the
D e b u g g e r 1 1 - 3

Looking at Your Source Program 11-4
Stopping Execution of Your

P r o g r a m 1 1 - 5
Continuing Execution of Your

P r o g r a m 1 1 - 6

Examining and Modifying Data 11-7
Using the : Command 11-7
Using the TYPE Command 11-8
Using the LET Command 11-9

Value Tracing 11-9
Getting HELP 11-10
How to Leave the Debugger 11-11
For More Information... 11-11

TIMIZING F77 PROGRAMS

Multidimensional Arrays 12-1
Loading and Memory Allocation 12-2
Function Calls 12-3
Input/Output 12-3
Statement Sequence 12-4
Parameter Statements 12-5
Library Calls 12-5
Integer Division 12-5
Compiler Options 12-6
Conclusion 12-7

APPENDIXES

A PRIME EXTENDED CHARACTER SET

Specifying Prime ECS Characters
Direct Entry
Octal Notation
Character String Notation
Program Example

Special Meanings of Prime ECS
Characters

F77 Programming Considerations
Prime Extended Character Set Table

B F77 PROGRAMMING EXAMPLES

Sample Program #1
Sample Program #2

C CONVERTING FTN PROGRAMS TO F77

Program Conversion
Degrees of Program Unit

Conversion
Using an FTO Program Unit in an

F77 Program
Producing an F77-compatible

Program Unit
Optionally Acceptable ETN

Constructs
Reimplemented ETN Constructs

Unsupported FTN Constructs
Obsolete FTN Constructs

Producing an F77 Standard
Program Unit

Elimination of Optionally
Acceptable Constructs

D MEMORY FORMATS FOR F77

E SHORTCALL EXAMPLES
V-Mode Examples

The V-Mode Programs
Compiling, Linking, and Executing

the V-Mode Programs
I-Mode Examples

The I-Mode Programs
Compiling, Linking, and Executing

the I-Mode Programs

F ANSI STANDARD VIOLATIONS FLAGGED
BY -STANDARD OHPION

G IHE SEARCH RULES FACILITY
INCLUDE Files and the Search Rules

Fac i l i t y
Establishing Search Rules
Using Search Rules
Using [referencing_dir]

H ALPHABETIC SUMMARY OF F77 INTRINSIC
FUNCTIONS

INDEX

About
This Book

This document is a programmer's guide to the FORTRAN 77 language as
implemented on the Prime system. You are expected to be familiar with
some version of FORTRAN, and with programming in general, but not
necessarily with Prime computers.

If you are familiar with programming but not with FORTRAN, you should
consult an appropriate FORTRAN 77 textbook. Here are some examples of
textbooks you may find helpful:

Davis, Gordon B., Hoffman, Thomas R., FORTRAN 77: A Structured
Disciplined Style, McGraw-Hill, Inc., New York, 1983

Katzan, Harry, FORTRAN 77, Van Nostrand Reinhold Company, New
York, 1979

Wagener, Jerrold L., Principles of FORTRAN 77 Programming, John
Wiley and Sons, New York, 1980

HOW TO USE THIS BOCK

This book is divided into three parts and a set of appendixes:

PART I — WERVIEW OF FORTRAN 77 AND PRIME F77

• Chapter 1 describes the different parts of an F77 statement such
as symbols, constants, variables, arrays, etc.

• Chapter 2 gives you general information concerning FORTRAN and
introduces basic facts needed before writing FORTRAN programs on
Prime equipnent.

PART II — PRIME F77 LANGUAGE REFERENCE

• Chapter 3 describes specification statements, which define
characteristics of symbols used in the program, such as data
types, array dimensions, etc.

• Chapter 4 describes assignment statements, which define values
used in the program.

i Chapter 5 describes control statements, which transfer control
from one point in the program to another.

• Chapter 6 describes F77 I/O statements, data storage, and file
types.

> Chapter 7 describes the FORMAT statements used in conjunction
with formatted I/O statements.

' Chapter 8 discusses subprograms, both user-written and all the
intrinsic functions that are supplied by the F77 compiler.

PART III — WORKING WITH PRIME F77

Chapter 9 describes how to invoke and use the F77 compiler.

Chapter 10 describes how to use the PRIMDS commands BIND and
RESUME to link and execute F77 programs.

Chapter 11 describes how to locate errors that occur during
compile, load, or execution time using Prime's Source Level
Debugger, DBG. (This is a separately priced product.)

Chapter 12 presents programming considerations and procedures
for improving the performance of F77 programs.

ndixes

Appendix A lists the Prime Extended Character Set, which F77
uses.

Appendix B contains two F77 programming examples.

Appendix C describes the techniques required for converting
Prime ETN programs to F77.

Appendix D illustrates how Prime F77 data types are represented
in memory.

iLl!Jw»'«ltlisHtTAte>r*ggmSTon>>:^«
use of the SHORTCALL statement.

Appendix F contains the violations of the ANSI Standard that are
flagged by the -STANEftRD compiler option.

Appendix G describes the use of Search Rules Facility in
conjunction with INCLUDE and $INSERT statements.

Appendix H contains an alphabetic summary of the F77 Intrinsic
Functions.

RELATED DOCUMENTS

In addition to the FORTRAN 77 Reference Guide, there are several books
describing other Prime utilities that will help you with your
programming on Prime equipment. These documents are described below.

Prime User's Guide

Instructions for creating, loading, and executing programs in Prime
FORTRAN 77 or any Prime language, plus extensive additional information
on Prime system utilities for programmers, are found in the Prime
User's Guide. Little general information about using the Prime
computer system is presented here. The user's guide and this reference
guide are complementary documents. Both are essential for programming
on Prime machines.

FORTRAN 77 Programmer's Companion

The FORTRAN 77 Programmer's Companion is a pocket-size guide that
contains a summary of extracts from the Reference Guide. Included are
language statement formats, compiler options, data tables, functions,
and reference tables.

FORTRAN Reference Guide

The HN language is described in the FORTRAN Reference Guide. Those

that guide, since it contains some information that applies to FTOF but
not F77. Such information is not reiterated in this guide. See
Appendix C for information on the conversion of FTN programs to F77.

New User's Guide to EDITOR and RUNOFF

EDITOR is Prime's line-oriented text editing system. RUNOFF is a text
processor for formatting text. The New User's Guide to EDITOR and
HJNOFF provides complete information on these utilities.

EMACS Primer and EMACS Reference Guide

EMACS, Prime's screen editor, can also be used to enter and modify
source code and text files. The Primer is a user's guide designed for
people with little or no experience with screen editors. The Reference
Guide describes the full use of the screen editor. EMACS is a
separately priced product.

Subroutines Reference Guide Series

This 4-volume series documents the PRIMDS operating system and
application-level subroutines for advanced programmers who wish to
incorporate them into their programs.

Programmer's Guide to BIND and EPFs

This document introduces BIND, Prime's new linking utility for creating
Executable Program Formats (EPFs). The Programmer's Guide to BIND and
EPFs contains a complete dictionary of all BIND commands as well as a
dictionary of EPF-related PRINDS commands and new subroutines that
apply to EPFs. It also provides a discussion of programming
restrictions and limitations with EPFS and how to build an EPF library.

Advanced Programmer's Guide Series

The Advanced Programmer's Guide series provides an in-depth discussion
of the new commandenvironment available with EPFs. It also provides a
detailed description of the linking utility, BIND, that is used to
create these dynamic runfiles.

Assembly Language Programmer's Guide
This document contains information that you will need to write programs
in the Prime Macro Assembler (PMA) language.

Guide to Prime User Documents

This document contains a complete listing of books currently available
for Prime products. It includes information on what each book
contains, what product the book documents, when and if the book was
updated, and how to order Prime documents.

PRIMOS Commands Programmer's Companion

This pocket-size companion contains a brief statement of format and
usage for all PRIMOS user commands.

Source Level Debugger User's Guide

This book describes the use of Prime's interactive debugging product,
EBG. The Source Level Debugger is a separately priced product used for
locating errors that occur upon execution of your program. This book
explains the concepts, conventions, and use of the Debugger. A
complete list and explanation of all Debugger commands is included.

The ANSI Standard

The definitive reference for FORTRAN 77 is ANSI X3.9-1978 Programmin
Language FORTRAN. Every installation that uses FORTRAN 77 extensively
should have a copy of this standard, which may be obtained from
American National Standards Institute, 1430 Broadway, New York, NY,
10018.

Other Sources of Information

In addition to the documents listed above, please consider the
following sources when looking for information about the F77 compiler:

• The Software Release Document, also called an MRU, released at
each software revision. This document contains a summary of new
features and changes in Prime's user software.

Prime's online HELP files. Information on PRIMOS commands is
displayed at your terminal, including a cumulative list of
manuals, updates, etc.

PRIME DOCUMENTATION CONVENTIONS

The following conventions are used in command formats, statement
formats, and in examples throughout this document. Command and
statement formats show the syntax of commands, program language
statements, and callable routines. Examples illustrate the uses of
these commands, statements, and routines in typical applications.
Terminal input may be entered in either uppercase or lowercase.

Convention Explanation Example

UPPERCASE In command formats, words in
uppercase indicate the actual
names of commands, statements,
and keywords. They can be
entered in either uppercase or
lowercase.

SLIST

Abbreviations If a command or statement has
an abbreviation, it is
indicated by underlining, or
in some cases, the shortest
acceptable form of the command
is shown.

LOGOUT

Abbreviat ion:

In command formats, words
in lowercase indicate items
for which the user must
substitute a suitable value.

LOGIN user-id

In examples, user input is
underlined but system prompts
and output are not.

OK, stat units
USR=LAURAJ CNO

NO FILE UNITS OPEN
OK,

Brackets enclose a list of
one or more optional items.
Choose none, one, or more of
these items.

SPOOL -LIST
-CANCEL

Braces enclose a vertical
list of items. Choose one
and only one item.

CLOSE I filename
I ALL

xvi 11

An ellipsis indicates that
the preceding item may be
repeated.

i t e m - x [, i t e m - y] . . .

In command or statement
formats, parentheses must be
entered exactly as shown.

DIM array (row,col)

Wherever a hyphen appears in
a command line option, it is
a required part of that option.

SPOCL -LIST

The (CR) symbol indicates a
single carriage return, which is
generated by hitting the RETURN
key on most terminals.

ADDITIONAL DOCUMENTATION CONVENTIONS

Convention

Shading

Explanation Example

Shading around a section of REAL*16
text indicates a Prime
extension to or restriction
on the ANSI standard.

Filename conventions

Convention

filename.BIN
or B filename

Explanation

filename.language Source file
or filename

Binary (object) file

Example
MYPROG. F77

MYPROG.BIN

filename.LIST
or L_filename

filename. RUN

Listing file

Saved executable runfile

MYPROG.LIST

MYPROG.RUN

Filenames may be comprised of 1 to 32 characters inclusive, the first
character of which must be nonnumeric. Names should not begin with a
hyphen (-) or underscore (_). Filenames may be composed only of the
fol lowing characters: A-Z, 0-9, „#$&-*. and /.

Note

Oi some devices, the underscore (_) may print as backarrow (—).

PRIME ADDRESS SPACE MEASUREMENT UNITS

• byte — 8 bits; 1 Prime ECS character.

i halfword — a unit of address space two bytes (16 bits) in
size.

word, fullword — a unit of address space four tytes (32
bits) in size.

Introduction to F77

DEFINITIONS

There are many versions of FORTRAN,
following terms to describe them:

In this guide, you will find the

T e r m D e fi n i t i o n

EORTRAN A mathematically oriented programming language
developed by IBM in the 1950s.

FORTRAN 66 A standardized FORTRAN, defined in the American
National Standards Institute (ANSI) publication
ANSI X3.9-1966.

EORTRAN IV Any version of FORTRAN that is based on ANSI
X3.9-1966 and contains extensions developed by a
particular computer manufacturer.

FTN Pr ime FORTRAN IV

FORTRAN 77 A new standardized EORTRAN, defined in the ANSI
publication ANSI X3.9-1978.

Fourth Edition

FORTRAN 77 Reference Guide

Prime's extended version of EORTRAN 77. The
language conforms fully to ANSI X3.9-1978.

Certain EORTRAN-specif ic terms used in this introduction are defined at
the beginning of Chapter 2.

EORTRAN 77

In 1978, ANSI published ANSI X3.9-1978 Programming Language EORTRAN.
This standard defines a new version of EORTRAN, called EORTRAN 77. The
new EORTRAN includes and standardizes nearly all the useful extensions
to EORTRAN 66 developed by individual manufacturers. The result is a
comprehensive, well-defined, and powerful language.

NEW FEATURES IN EORTRAN 77

EORTRAN 77 provides many capabilities additional to those of
EORTRAN 66. Some of them have been used in nearly all manufacturers'
versions of EORTRAN IV, but have not previously been defined in any
standard. Many of them were incorporated into ETN on the basis of
preliminary documents released by ANSI, to facilitate the eventual
conversion of FTN programs to F77.

The features available in EORTRAN 77 but not in EORTRAN 66 are as
follows.

Data Declaration Capabilities

A statement to name the main program (PROGRAM statement)

An implicit type-rule for default typing of data items by first
letter (IMILICIT statement)

_■ Named constants (PARA^TER statement)

A CHARACTER data type

i Arrays with up to seven dimensions

Explicit lower bounds for array dimensions

Array bounds with negative, 0, or positive values

Integer constant expressions in array-bound specifications

Fourth Edition

INTRODUCTION TO F77

Execution-time Capabilities

Operations to concatenate and extract substrings from CHARACTERdata

Use of an array name, character substring, or implied-DO list in
a DATA statement

Use of integer expressions (rather than just integers) for array
subscripts, selection values for computed GO TOs, and file units
referred to in BACKSPACE, ENDFILE, and REWIND statements

Use of integer, real, or double precision expressions for
DO-loop and implied-DO index and control values
DO and implied DO loops that may execute zero times and have
negative incrementation values
A block-IF statement, with subsidiary ELSE IF, ELSE, and END IF
statements, for conditional execution of blocks of statements
Use of a format statement label in an ASSIGN statement

Use of decimal digits or a character string in a PAUSE or STOP
statement

Multiple entry points to subprograms
Alternate returns in subroutines

Differentiation between external (user-supplied) and intrinsic
(built-in) functions
Generic names for intrinsic functions

Functions with no arguments

More than one block data subprogram

\?MWA9mn*J\ Capabilities

Direct-access files

List-directed I/O
Internal (storage-to-storage) formatted data transfer

Fourth Edition

EORTRAN 77 Reference Guide

• Statements to open and close files, and to inquire about the
status of a file

• Additional edit-control descriptors for formatted I/O, such as
sign control, blank editing, and tabbing

PRIME EXTENSIONS TO EORTRAN 77

Unextended EORTRAN 77 already includes features to perform nearly every
programming task for which the EORTRAN language is appropriate. Prime
has avoided extending its EORTRAN 77 unnecessarily, since needless
extensions would serve mostly to reduce compatibility between F77 and
other versions of EORTRAN 77.

Prime has extended its EORTRAN 77 for the following reasons:

• To provide added power and convenience of use to the language

• To take advantage of particular features of the Prime computer
system

• To provide the maximum possible compatibility with ETN, and
substantial compatibility with IBM and other manufacturers'
versions of EORTRAN IV. See Appendix C for information on the
conversion of ETN programs to F77.

Ihe Prime extensions of greatest interest to a new F77 user are listed
below. All Prime F77 extensions are described in detail at appropriate
places later in this guide. Throughout this book shading has been used
to indicate Prime F77 extensions. The extensions are:

» Variable and array names may have up to 32 characters, may
contain lowercase letters, and may contain the characters "$"
and ""

Comments may appear anywhere in a statement.

Precision specifications for the FORTRAN data types are
provided. REAL*16 (quadruple floating point precision),
0DMHiEX*16, INTEGER*2, L0GICAL*2, and L0GICAL*1 data types have
been added.

Extended intrinsics to deal with the extended data types are
provided.

Octal constants are accepted in F77 source text.

Data may be initialized in a type-declaration statement.

CTER
>MM3N :

enced an

Fourth Edition

INTRODUCTION TO F77

MMDN block da
in i t i a l i zed .

stat ic . MMDN

IM syntax for direct-access READs and WRITES is accepted.

jcursion is permitted in subroutines, though not in functio

The B field descriptor for formatting business data (similar
PICTURE formatting in OOBCL and PL/I) is provided.

Files can be automatically inserted into the source file bj
compiler.

ere are various other extensions that allow certain FTN constru'
ich are not standard in EORTRAN 77, to be accepted ty the
mpiler. These are described in Appendix C.

!ME F77 RESTRICTIONS

The segmented nature of the Prime virtual memory architecture imposes a
few restrictions on F77 programs. None of these are contrary to the
ANSI standard or need interfere with program design.

The executable code (exclusive of data storage) for a program
unit may not occupy more than one segment (128K bytes).

No program unit may have more than one segment of local stal
storage. (For additional static storage, move some of the data
to a CDMMDN block.)

No program unit may have more than one segment of d
storage. (Make the excess static.)

No data item in a CDMMDN block may be split across the bourn
stween two segments. Methods for complying wi•"' - CDMMDN Statement in Chapter 3

INTERFACE TO OTHER LANGUAGES

Since all Prime high-level languages are alike at the object-code
level, and since all use the same calling conventions, object modules
produced by the F77 compiler can reference and be referenced by modules
produced by the ETN, COBOL, PASCAL, or PL1G compilers, provided that
certain restrictions are observed:

• All I/O routines must be written in the same language.

• There must be no conflict of data types for variables being
passed as arguments. For example, an INTEGER in FORTRAN 77
should be declared as FIXED BINARY in PL/I. See Appendix D for

Fourth Edition

FORTRAN 77 Reference Guide

a description of F77 data storage formats. For detailed
information on passing arguments from one language to another,
see the Subroutines Reference Guide for Rev. 19 and higher.

• Modules compiled in 64V, 321, or 32IX mode cannot reference or
be referenced by modules compiled in any R mode. Modules in 64V
or 321 may reference each other if they are otherwise
compatible.

A few special restrictions apply when F77 and FTN modules reference
each other. These are discussed in Appendix C.

F77 program units can also reference H4A (Prime Macro Assembler)
routines, and vice versa. For information, see the Assembly Language
Programmer's Guide.

F77 AND PRIME UTILITIES

Prime offers four major utility systems for use in your programming.
These are:

• Data Base Management System (DBMS)
• Forms Management System (FORMS)

• Multiple Index Data Access System (MIDASH,US)

• Prime's Recoverable Indexed Sequential Access Method (PRISAM)

For complete information on any of these utilities, see the appropriate
reference guide. Following is a brief description of FORMS, MIDASPLUS,
and PRISAM.

Forms Manac 'Stem (FORMS)

The Prime Forms Management System (FORMS) provides a convenient method
of defining a form in a language specifically designed for such a
purpose. These forms may then be implemented by any applications
program that uses Prime's Input/Output Control System (IOCS), including
programs written in F77. Applications programs communicate with FORMS
through input/output statements native to the host language. Programsthat currently run in an interactive mode can easily be converted to
use FORMS.

FORMS allows cataloging and maintenance of form definitions available
within the computer system. To facilitate use within an applications
program, all form definitions reside within a centralized directory inthe system. This directory, under control of the system administrator,
may be easily changed, allowing the addition, modification, or deletion
of form definitions.

Fourth Edition

INTRODUCTION TO F77

The interface of F77 with FORMS is identical to that of ETN. For more
information see the FED User's Guide (IDR4940).

Multiple Index Data Access System (MIDASPLUS)
MIDASPLUS is a system of interactive utilities and high-level
subroutines enabling the use of index-sequential and direct-access data
files at the applications level. Handling of indexes, keys, pointers,
and the rest of the file infrastructure is performed automatically for
you by MIDASILUS. Major advantages of MIDASPLUS are:

• Construction of large data files

• Efficient search techniques

Rapid data access
• Compatibility with existing Prime file structures
• Ease of building files

• Primary key and up to 19 secondary keys possible

• Multiple user access to files

▶ Data entry lockout protection

• Partial/full file deletion utility

The interface of F77 with MIDASPLUS is identical to that of ETN.

See the MIDAS User's Guide (IDR4558) and the MIDASPLUS PRIfE TECHNICAL
UK&TE PTU98) .

Prime's Recoverable Indexed Sequential Access Method (PRISAM)

ERISAM is a data management software system designed to provide
solutions to users who require automatic recovery, simple file
structures and strong performance in a transactional multiuser
envirorment. Major features of PRISAM are:

• Manages sequential, indexed, and relative files

• Supports user defined and mixed transactions
• Provides for recovery from system halts

• Provides for media failure recovery

Fourth Edition

EORTRAN 77 Reference Guide

• Provides for software error recovery

• Allows up to 24 keys per file

• Permits concatenated keys

For more information, see the PRISAM User's Guide (DOC7999-2LA).

THE CDNDITION-HANELING MECHANISM

When an error occurs during execution of a program, ERIMDS responds by
raising a condition. For each type of error, a corresponding condition
exists.

When a condition is raised, PRIMDS activates the condition-handling
mechanism. The condition handler notes what condition exists, then
calls an error-handling routine known as an "on-unit" to deal with the
error that has occurred.

PRIMDS supplies a default on-unit for each condition. You can specify
your own response to a condition by supplying an on-unit of your own.
When a condition occurs for which an on-unit exists that you have
supplied, the actions specified in the on-unit will be taken, ratherthan those specified in the PRIMDS default on-unit.

Information on the system default on-units and the method for
substituting your own on-units is contained in the Prime User's Guide.
For complete information on the condition handler, see the Subroutines
Reference Guide.

Fourth Edition

FORTRAN 77 Terms
and Concepts

DEFINITIONS

Throughout this guide, several terms are frequently used. You should
be aware of their exact meanings if discussions using them are to be
understood correctly. You should also be familiar with the text
conventions explained in ABOUT THIS BOCK. These terms are:

Term

Actual Argument

Arithmetic Expression

Character Expression

D e fi n i t i o n

A data item passed to a subprogram.
Actual arguments appear in the
argument list of a subroutine CALL
statement or a function reference.

Any expression which evaluates to
type INTEGER, REAL, DOUBLE PRECISION,
WP£M£, or COMPLEX.

A single item of type CHARACTER or
the concatenation of any number of
s u c h i t e m s . S u b s t r i n g s a n d
references to CHARACTER functions are
permitted. Trailing blanks are of no
s i g n i fi c a n c e i n a c h a r a c t e r
expression.

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Dummy Argument A variable or array name appearing in
the header statement or an ENTRY
statement of a subprogram. When the
subprogram is invoked, each dummy
argument is associated with the
actual argument whose name appears in
the corresponding position in the
CALL statement or function reference.

Fixed-Length
Character Expression

Integer Expression

Integer Constant
Expression

Program Unit

A character expression in which no
operand is a dummy argument with an
adjustable(*) length specification.

Any expression which evaluates to
type INTEGER, either directly or
a f t e r t y p e c o n v e r s i o n v i a t h e
functions INTS, INTL, or INT.

Any expression consisting only of
integer constants and named integer
constants with arithmetic operators
and parentheses.

A main program, external function,
subroutine, or block data unit.

Segment

Subprogram

A 128K-byte block of address space.

Any program unit except a main
program.

FORTRAN 77 CHARACTER SET

As of PRIMDS Revision 21.0, FORTRAN 77 character strings may contain
any character in the Prime Extended Character Set (Prime ECS), which
contains the ASCII-7 character set as a proper subset.

In FORTRAN 77 program source statements, the valid characters are a
subset of Prime ECS, as follows:

The 26 uppercase letters:
A,B,C,D,E,F,G,H,I,J,K,L,M,N,0,P,Q,R,S,T,U,V,W,X,Y,Z

The 10 digits: 0,1,2,3,4,5,6,7,8,9

Fourth Edition, Update 2

FORTRAN 77 TERMS AND CONCEPTS

These 13 special characters:

= equals
' single quote (apostrophe)
: colon
+ plus
- minus
* aster isk
/ s lash
(left parenthesis
) right parenthesis
, comma
. decimal point
$ d o l l a r s i g n ^ ^ . ^

mderscore (F77 extension. Backarrow on some termi

Blanks or spaces

For the complete list of the Prime Extended Character Set that F77
supports, refer to Appendix A.

Note

ED, the Editor, interprets the backslash (\) as a logical
tab. If you wish to make use of the Prime ECS backslash
character in a file you are editing with ED, you must define
another character as your logical tab.

Blanks in character and Hollerith constants and in $INSERT statements
are treated as character positions. Elsewhere in FORTRAN 77 source
text, blanks have no meaning and can be used as desired to improve
program legibility. Lowercase letters are mapped to uppercase (except
ithin Hollerith and CHARACTER constants) unless the progr<
ompiled with the -LCASE option. Keywords must be in upperc
LCASE is specified. For the collating sequence, see Appendix A.

LINE FORMAT

Each program line is a string of 1 to 72 characters. Each character
position in the line is called a column. Columns are numbered from
left to right starting with 1. There are three types of lines:

• Comments

• FORTRAN 77 statements (and their continuations)

• Insert statements

In all line types, columns 73-80 are available for line order sequence
numbers or other identification. (Usage is optional.) These columns,
like comments, are ignored by the compiler, but are printed in the

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

program listing.

Comments

Comment lines are identified by the letter "C" or an asterisk in column
1. The remainder of the line may contain anything. A comment in
columns 2 through 5 will cause the compiler to issue an error message.
If you place a "C" or an asterisk in column 6, the compiler will
interpret this as a continuation character. A comment line is ignored
by the compiler, except that it is printed in the source listing. A
comment line is not a statement. It provides a mechanism for you or
someone else to better understand what your program is attempting to
accomplish.

Starting from column 7 onward, use the following format to place a
ent in your program:

* comment */

The end of the line terminates the comment and makes the */
unnecessary. A comment within a character string will be treated as
part of the character string.

Statements

In the first line of a statement, columns 1-5 are reserved for the
statement label. Any statement may have a label between 1 and 99999
affixed to it. Blanks and leading zeros are ignored. Column 6 must be
a blank or a zero. Columns 7-72 contain the statement. The statement
may begin with leading blanks, to make the program easier to read.

In the continuation of a statement, columns 1-5 must be blank, column 6
may be any character except 0 or a blank, and the statement
continuation is in columns 7-72. There may be at most 19 continuation
l ines .

Inserts

stream, via the insert statement. An insert statement consists of the
keyword $INSERT beginning in column 1, followed ty the pathname of the

Fourth Edition, Update 2

FORTRAN 77 TERMS AND CONCEPTS

DATA TYPES

With the exception of the CHARACTER data type, a new feature of
FORTRAN 77, the FORTRAN 66 and FORTRAN 77 data types are the same.
Since you are expected to be familiar with some version of FORTRAN IV
(extended FORTRAN 66), only highlights and Prime extensions of the
FORTRAN 77 data types are discussed in the following sections. The
CHARACTER and INTEGER data types are discussed in more detail. Each
data type is illustrated with several constants of that type.

The seven major data types that exist in Prime F77 are:

INTEGER

DOUBLE PRECISION

COMPLEX

LOGICAL

CHARACTER

Each of these may exist in any of four forms:

Constant

Parameter

Var iab le

■ Array

In addition, there are statement labels and Hollerith constants,
subtypes exist, differing from each other only in storage size.

Table 2-1 lists the seven data types available in F77.

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Table 2-1
F77 Data Types

Type Bytes Range

INTEGER

INTEGER*2
(short intege

2 or 4

INTEGER*4
(long integer)

Same as for INTEGER*2 or
INTEGER*4. (See Note.)

-(2**15) to (2**15-1)
Decimal -32768 to 32767
Octal
0'100000' to 0*77777'
Hexadecimal
Z'8000' to Z'7FFF'

-(2**31) to (2**31-1)
Decimal
-2147483648 to 2147483647
Octal
0*20000000000' to

O* 17777777777*
Hexadecimal

REAL
(REAL*4)

DOUBLE PRECISION

+ (10**-38 to 10**38)

+ (10**-9824 to 10**9824)

REAL*16

COMPLEX
(COMPLEX*

EX*16

LOGICAL
L0GICAL*4
L0GICAL*2
LOGICAL*!

CHARACTER
Statement Label
H o l l e r i t h

2 or 4

1 to 32767
2 or 4
Var ies

+ (10**-9824 to 10**98

Each component has same
range as REAL

Each component has same
range as DOUBLE PRECISION

T or F

T or F

1 to 32767 characters
1 to 99999
1 to 256 character-

Fourth Edition, Update 2

FORTRAN 77 TERMS AND CONCEPTS

INTEGER Data

An INTEGER data item represents an integer exactly. Integers are
always written without a decimal point. An integer constant may be
represented in decimal or octal form. (Octal form is an F77
extension.)

Here are some examples of INTEGER data items:

Decimal

-204
0
8
1911

F77 supports two integer subtypes: INTEGER*2 (short) and INTEGER*4
(long). If a variable is declared as an INTEGER with no *(size)
specified, or takes on the type INTEGER by default, the variable will
either be INTEGER*4 if the program is compiled with -INTL (the
default), or INTEGER*2 if it is compiled with -INTS.

Integer constants compiled with the -INTL option (the default) will
become INTEGER*4. With the use of the -INTS option, they become
INTEGER*2 unless:

• Their magnitude lies outside the range -32768 to +32767 or is
greater than -.177777.

• Their representation, including leading zeroes, contains more
than 5 decimal or 6 octal digits. For example:

30 short integer constant (under -INTS)
000030 long integer constant (always)

The following rules apply to the use of long and short integers within
a program:

• They are interchangeable and may be mixed freely in expressions
as long as short integers are not assigned values outside their
range. A value outside of the range will result in an error
message or indeterminate results.

• Integer arguments that are supplied to preexisting library and
I/O routines must be of the type they expect. For example, ifthe library routine expects an 3NTEGER*2 argument, you must
convert any long-integer arguments (the default), to short
integers by the use of the INTS intrinsic function. If you want
to convert all short integers in your program to long integers,
use the -INTL option at compile time.

Fourth Edition

FORTRAN 77 Reference Guide

REAL Data

A REAL data item is an approximation to a real number. REAL data is
always written with a decimal point, an exponent, or both. The decimal
point is optional if an exponent is given. Blanks may appear between
the mantissa and its exponent. Up to seven significant digits are
retained. Exponents may range from -38 to +38. Here are some
examples:

-204. -20400 E-2 8.8756E4 8.8756E+4

Real constants must fall in the type REAL range. They will not become
DOUBLE PRECISION on the basis of magnitude or number of digits.

DOUBLE PRECISION Data

DCUBLE PRECISION data is also called REAL*8. It is similar to REAL
except that twice as much storage is allocated, and "D" rather than "E"
appears in the exponent. The "D" exponent is mandatory. Examples:

123456789.DO 2.5 D-2 -999Df21

Up to 14 significant digits are retained. The exponent may range from
-9812 to +9824.

REAL*16 Da

REAL*16 data is similar >
significant digits are retained
exponent. Here are some examples

WmSmrnm ̂fcm exce
The letter "Q" is used as

2345Q03 2.72Q0 4.6Q-2 1234.CH01

xponent may range from -9818 to +9824.

COMPLEX Data

A COMPLEX (or ODMPLEX*8) data item is an ordered pair of real numbers.
The first number represents the real part and the second represents the
imaginary part. In a complex constant, or when a complex number is

Fourth Edition

EORTRAN 77 TERMS AND CONCEPTS

used in list-directed I/O, the number appears in parentheses with its
components separated by a comma. Here are some examples:

(l.,- l.) (25E6, 331.) (.172E19, 304E-2)

The comma and parentheses must appear when a complex number is used in
list-directed I/O. They must be omitted from a complex number used in
formatted I/O.

The CDMPLEX*16 data type is identical to CDMTLEX
DOUBLE IRECISION numbers are used rather than REAL ro

exce

LOGICAL Data

LOGICAL data items denote only the logical values TRUE and FALSE,
programs, logical constants must be written:

.TRUE. .FALSE.

In input files, either the constants or the letters T and F may denote
the values. On output, T and F are always written.

Logical constants and logical variables lacking a *(size) specification
become either L0GICAL*4 if the program is compiled with -DDGL (the
default), or L0GICAL*2 if it is compiled with -LOGS. A LOGICAL*! type
is also provided for compatibility with IBM EORTRAN. This type should
not be used in new programs, because it is processed less quickly than
L0GICAL*2 or LOGICAL*4.

CHARACTER Data

The CHARACTER data type is a new feature of EORTRAN 77. It makes
Hollerith strings and the use of arithmetic variables to hold character
data obsolete. F77 continues to support the Hollerith and
arithmetic/character techniques as an aid to upward compatibility of
existing programs. New programs should use only CHARACTER data.
A CHARACTER data item is a nonempty string of characters. Each item
has a length equal to the number of characters it contains. The
character positions are numbered from 1 to LENGTH. Each character
occupies one byte.

Fourth Edition

FORTRAN 77 Reference Guide

A character constant consists of a string of characters enclosed in
single quotes. Any internal single quotes must be represented by two
consecutive single quotes. The two count as only one character
position. For example, the character string:

'THAT"S ALL'

occupies ten positions, since the two quotes count as one for the 'S.

ollerith constants are accepted in F77 to aid upward compatibility
? IV programs. p"

OPERANDS

Operands are those elements that are manipulated by the program. Four
types of operands exist in EORTRAN 77: Constants, Parameters,
Variables, and Arrays.

Constants

Constants exist for every data type. In a program, a constant appears
as a literal representation of the desired value. The compiler
determines the type of the constant from its appearance, its context,
and the compiler options in effect.

The correct form for each type of constant appears in the previous
subsection under the appropriate data type.

Parameters

Parameters are named constants, and may be of any data type. They are
functionally similar to constants, but are referenced by the name
assigned to the value in a PARAMETER statement, rather than by a
literal occurrence of the value. Parameters may not appear in FORMAT
statements. Parameter names follow the same rules as variable names.

Do not confuse parameters with arguments to subroutines. In EORTRAN 77
the term "parameter" denotes only a named constant.

Fourth Edition

FORTRAN 77 TERMS AND CONCEPTS

Variables are data items whose values may be assigned, and subsequently
altered, during program execution.

EORTRAN 77 variable names contain from one to six characters,
variable names may have from one to 32 characters. Character 1 must
alphabetic; characters 2-32 (if any) must be alphanumeric, or the
characters "$" or "__". You are discouraged from using "$" in your
variable names because this character is used extensively in
Prime-supplied software names, where it serves to implement a system of
naming conventions.

When no type is explicitly declared, a variable whose name begins with
the letters I through N becomes type INTEGER, and a variable whose name
begins with A-H or O-Z becomes type REAL. See Chapter 3 for
instructions on how to override this implicit convention, and how to
specify DOUBLE PRECISION, COMPLEX, CHARACTER, and LOGICAL types.

Arrays

Arrays are ordered, multidimensional sets of variables. An array is
declared in a DIMENSION, CDMMDN, or type-statement such as:

DIMENSION ar ray_declarator [,ar ray_declarator]...

where each "array declarator" has the form;

NATE (dl[,d2]...[,d73)

in which NAME is the name of an array (same rules as for a variable
name), and each dn has the form:

[Ln:]Hn

Ln is the lower subscript bound, and Hn is the upper subscript bound,
for dimension n. There may be at most seven dimensions. If Ln is
omitted, it is assumed to be 1.

For example:

INTEGER ARR(-3:3,7,0:204,-207:-91,81)
Dn<ENSION A (2:4,4,-1:1)
CDMMDN C (-2:6,8)

Fourth Edition

EORTRAN 77 Reference Guide

In a main program, Ln and Hn must be integer-constant expressions. For
a dummy argument array in a subprogram, they may be integer expressions
(for an adjustable array), and the upper bound of the last dimension
may be given an asterisk (to denote an assumed-size array). See
Chapter 8 for details. Arrays are stored by columns: the leftmost
subscript varies most rapidly when the array is accessed in storage
order.

Referencinq Arravs

Array references have the form:

NAME! (S1[,S2]...[,S7])

where each Sn is a subscript expression.

A subscript expression is any legal FORTRAN 77 integer-valued
expression. It may contain constants, variables, function references,
intrinsic references, and other array references.

Notes

Non-integer data items are not allowed in subscript
expressions. Convert any such items to integers by using the
appropriate conversion function (IDINT, IFIX, INT, etc.)

An array longer than one segment (128K bytes) must be stored in

be stored in a CDMMDN block longer than one segment. See
Arrays as Arguments in Chapter 8 for more information. See the
CDMMDN Statement in Chapter 3 for a restriction on the
placement of data items (including arrays) in a CDMMDN block.

Evaluation of a function reference in a subscript expression
must not alter any other elements of the subscript expression
list, either directly or by altering arguments used in other
function references.

Caution

When an array that crosses or may cross a segment boundary is
passed as an argument to a subprogram, special action is
necessary. See Arrays as Arguments in Chapter 8.

Fourth Edition

FORTRAN 77 TERMS AND CONCEPTS

EXPRESSIONS

An expression is formed from one or more operands, operators, and
parentheses. It evaluates to a single value. There are four kinds of
expressions in F77:

• Ar i thmet ic

Relat iona l

• Logical

i Character

Arithmetic Expressions

An arithmetic expression is used to express a numeric computation.
Evaluation of an arithmetic expression produces a numeric value. The
expression can consist of constants, numeric variables, array elements,
function references, or other expressions separated by parentheses and
arithmetic operators. An arithmetic expression can be just one
arithmetic term, or it can consist of more than one arithmetic term
separated by operators. In EORTRAN 77, there are six arithmetic
operators:

rator Representinc

Exponentiation
Division
Multiplication
Addition
Subtraction or Negation
Assignment

Operator Evaluation: Arithmetic expressions are evaluated according
to a particular operator hierarchy:

Operator Rank

and /
+ and -

Fourth Edition

EORTRAN 77 Reference Guide

When you have two or more operators of the same rank appearing in an
expression, they are generally evaluated in a left-to-right order. For
example, the expression A*B/C evaluates to (A*B)/C. However, the
compiler takes advantage of groupings of elements (in accordance with
mathematical rules) to optimize its output. In the case of A*B - A*C,
the compiler may evaluate A*(B-C) instead. Consequently, evaluation
may sometimes not be strictly left to right.
With exponentiation, the order of evaluation must b
right-to-left. For example, A**B**C is evaluated as A**(B**C).

from

The compiler always respects the integrity of parentheses. For
example, (A*B) - (A*C) would be evaluated exactly as written.
Expressions within parentheses are always evaluated before expressions
outside them. For example, A*(B/C) will have its quotient evaluated
first. Where evaluation order is critical, use parentheses to
eliminate any ambiguity.

If you are combining numeric data types in an expression (mixed-mode
arithmetic) the use of parentheses is suggested. For example, the
expression = I*J*R is best evaluated as = I*(J*R) as opposed to = I*J*R
or = R*I*J. An evaluation that proceeds in this manner may prevent an
overflow condition during integer multiplication. An overflow
condition happens when an integer or real value exceeds the upper limit
allowed by the computer.

Where multiple references to functions occur in an expression, the
compiler may evaluate them in any order. No function reference may
alter any other value in the expression, either directly or by altering
arguments used in other function references.

Character Expressions

A character expression contains a character string. It is a character
constant, symbolic name of a character constant, character variable
reference, character array element, character substring reference, or
character function reference.

To join two or more strings to form one longer string, use the double
slash as the concatenation operator:

character expression // character expression

Fourth Edition

FORTRAN 77 TERMS AND ODNCEPTS

Relational Expressions

A relational expression consists of two arithmetic or
expressions separated by one of six relational operators:

character

Relational C)perator Representing

• LT. Less than
.LE. Less than or equal to
.EQ. Equal to
.NE. Not equal to
.GT. Greater than
.GE. Greater than or equal

When evaluated, the value of a relational expression is either .TRUE,
or .FALSE. For example, the expression 2 .LT. 3 evaluates to .TRUE.
The arithmetic rules for operator precedence apply to relational
expressions:

" and /
+ and -

/ /
.GT. .GE. .EQ. .NE. .LT. .LE

Logical Expressions

A logical expression uses logical operators to connect relational
expressions. When tested, the logical exprssion will be either .mJE.
or .FALSE. Table 2-2 lists the logical operators.

The arithmetic rules for operator precedence apply to logical
expressions:

Rank

-J and /
+ and -

/ /
,GT. .GE. .EQ. .NE. .LT. .LE

.NDT.

.AND.

.OR.
.EQV. .NEQV.

Fourth Edition

EORTRAN 77 Reference Guide-

Table 2-2
FORTRAN 77 Logical Operators

Operator Meaning Example (P and Q
are of type LOGICAL)

Result

.NDT. Logical
Negation .TRUE.

.FALSE.
•FALSE.
• TRUE.

.AND. Logical
Conjunction .FALSE.

.TRUE.

.FALSE.

.TRUE.

.FALSE.

.FALSE.

.TRUE.
.TRUE.

.FALSE.

.FALSE.

.FALSE.

.TRUE.

Logical
Nonexclusive
"ORing"

.FALSE,

. t rue .
.FALSE,
.TRUE.

.FALSE.

.FALSE.

.TRUE.

.TRUE.

.FALSE.

.TRUE.

.TRUE.

.TRUE.

.EQV. Logica l .EQV.
Equivalence .FALSE. .FALSE. .TRUE

.TRUE. .FALSE. .FALSE.

.FALSE. .TRUE. .FALSE.

.TRUE. • TRUE. .TRUE.

.NEQV. Logica l .NEQV.
Nonequivalence .FALSE. .FALSE. .FALSE.

.TRUE. .FALSE. .TRUE.

.FALSE. .TRUE. .TRUE.

.TRUE. .TRUE. •FALSE.

Fourth Edition

FORTRAN F77 TERMS AND CONCEPTS

TYPE CONVERSION

Logical operators may combine logical operands of differing storage
lengths, and arithmetic operators may combine operands of differing
numeric types. The type of the result in such cases depends on the
types of the operands.

Logical Conversion

The storage length of the result when logical data of differing lengths
are combined is the longer of the two lengths. For example:

*2 .AND. L0GICAL*4) is LOGICAL*'

Arithmetic Conversion

The type of the result when differing numeric types are combined will
be that of the operand having the higher type in the following list
which is ordered from highest to lowest:

C0MPLEX*16
C0MPLEX*8
REAL*16
DOUBLE PRECISION
REAL
INTEGER*4

ER*2

For example, REAL + SHORT INTEGER is a REAL.

Special Case: To prevent loss of precision, the result-type when
C0MPLEX*8 and DOUBLE PRECISION data are combined will be C0MPLEX*16.

Caution

When long integers are converted to reals, there may be a loss
of precision. NO error message will be generated, but
incorrect results may occur.

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

PROGRAM ORGANIZATION IN FORTRAN 77

F77 program units consist of F77 statements. These statements must be
arranged in the correct order. This section describes F77 statment
order; Figure 2-1 summarizes the order.

Program Unit

A FORTRAN 77 program consists of one or more program units. A program
unit is a sequence of statements that perform one or more operations.
A program unit may be either a main program or a subprogram.

A program unit always has an END statement as its final statement.

Main Program

A main program is the program unit that receives control when an
executable program is initiated. There is only one main program unit.
The main program unit directs the flow of control to each subprogram
(if any). Control returns to the main program unit after each
subprogram has performed its computation.

The first statement in a main program unit is usually a PROGRAM
statement. A main program unit does not use a EUNCTION, SUBROUTINE, or
BLOCK DATA statement as its first statement. A main program unit
requires an END statement.

The main program unit is required for program execution.

Subprograms

A subprogram is a program unit that is invoked from the main program.
The subprogram performs a computation on the behalf of the main
program. There may be any number of subprograms associated with a main
program.

Subprograms are introduced by FUNCTION, SUBROUTINE, or BLOCK DATA
statements. The END statement is the final statement in a subprogram.

A subprogram is called (referenced) by a FORTRAN 77 statement in the
main program or another subprogram.

Fourth Edition, Update 2

FORTRAN F77 TERMS AND CONCEPTS

Organization Considerations

The following considerations apply to F77 program units:

A main program unit or a subprogram unit may reference other
program units that are contained in separate files.

A file may contain any number of program units.

Each program unit must be terminated by an END statement.

' Comments are the only statements that can appear between the END
statement of one program unit and the header statement in the
next program unit.

Size Considerations

In F77, no block of executable code can cross a segment boundary.
Therefore, no program unit may produce more than 128K bytes (the size
of a segment is 128K bytes) of code. A program unit will rarely be any
larger than this. A program unit that is larger than a segment, must
be broken up. Program data is kept in separate data segments, and
hence does not compete for space with the executable code.

The names of F77 program units may not be more than 32 characters
Additional characters will be ignored and a warning message print'

Fourth Edition, update 2

FORTRAN 77 REFERENCE GUIDE

PROGRAM, FUNCTION, SUBROUTINE, OR
BLOCK DATA STATEMENT.

COMMENT
LINES

PARAMETER
STATEMENTS

FORMAT
AND
ENTRY
STATEMENTS

DATA
STATEMENTS

IMPLICIT
STATEMENTS
OTHER
DATA
DEFINITION
STATEMENTS

STATEMENT
FUNCTION
STATEMENTS

EXECUTABLE
STATEMENTS

END STATEMENT

Statement Order in F77
Figure 2-1

Fourth Edition, Update 2

Specification
Statements

Specification statements are nonexecutable statements that allow you
t o :

• name your main program (PROGRAM).

• override the language convention for default data (IMPLICIT).

• override implicit typing of symbolic names (TYH3 statements).

• define array dimensions (DIMENSION).

• define common blocks (OOMMDN).

• allocate storage (EQUIVALENCE).

• initialize data (DATA).

• define symbolic names of constants (PARAMETER).

• pass subprograms as arguments to other subprograms (EXTERNAL).

• retain the value of local variables between subprogram
invocations (SAVE).

• pass specified function names as arguments to subprograms
(INTRINSIC).

Fourth Edition

EORTRAN 77 Reference Guide

• define beginning of block data subprogram (BLOCK DATA).

self-label

chapter also discusses the F77 compiler control directives, -m
ecutable statements are extensions to the FORTRAN language. Ta

3-1 gives a list of the specification statements and the syntax for
each stat_.

PROGRAM STATEMENT

The IROGRAM statement gives a name to a main program. It is not
required. However, if you use the PROGRAM statement, it must be the
first statement of the main program.

The IROGRAM statement has the following format:

PROGRAM name

name is the symbolic name of the main program in which the
PROGRAM statement appears, name must not duplicate the name of
any CDMMDN block or subprogram, or of any data item in the main
program.

Fourth Edition

SPECIFICATION STATEMENTS

IMPLICIT STATEMENT

The IMPLICIT statement allows you to override the language convention
for default data typing by first letter.

EORTRAN 77 automatically assigns types to all variables, parameters,
arrays, and functions that do not appear in type statements. The
default types are as follows: if the symbol's first character begins
with the letters I through N, the symbol is typed as integer; all
other names beginning with letters A - H, or 0 - Z, are typed as real.
The default integers are long integers (INTEGER*4) unless you use the
-INTS option at compile time. (See Chapter 9 for information on the
-INTS option.)

The IMPLICIT statment has the following format:

IMPLICIT type (list) [, type (list)]...

where:

type is one of INTBGER*2, INTEGER*4, REAL*4, DOUBLE IRECISION,
REAL*16, CDMPLEX*8, CDMPLEX*16, LOGICAL, or CHARACTER.

list alphabetically lists the letters that will cause default
to that type. Letters may be separated by a comma, or an
inclusive group of letters may be indicated with a dash.

Symbols not typed in a type statement or by a default specified in an
IMPLICIT statement will be typed by the EORTRAN 77 language default.

For example:

IMPLICIT DOUBLE PRECISION (A,N,0,P-Z), LOGICAL (B) , CHARACTER*3 (M)

First letter of syml

A, or N through Z
B
C through H
I through L
M

Double Precision
Logica l
Real
Integer
Character*3

If you use the IMPLICIT statement, it must be the first statement of a
main program (the second statement if a PROGRAM statement exists), or
the second statement of a subprogram. IMPLICIT affects all symbols not
otherwise typed. This includes dummy arguments in the header statement
of a subroutine or function, and function names that are not explicitly
typed. IMPLICIT typing does not affect the default type of intrinsic
funct ions.

Fourth Edition

EORTRAN 77 Reference Guide

TYPE STATEMENTS

The type statement is used to explicitly type symbolic names,
superceding any implicit type assignments of symbol names done either
by IMPLICIT or by language default. A data item may be initialized in
a type statement. There are two kinds of type declaration statements:

• numeric type declarations

• character type declarations

The following rules apply to type statements:

• Within a program unit, a name must not have its type explicitly
specified more than once.

• Type declaration statments must precede al l executable
statements.

• The name of a main program, subroutine, or block data subprogram
must not appear in a type statement.

Numeric Declaration Statements

The numeric type statement has the following format:

type v [,v]

where:

type is replaced by one
specifications:

of the fol lowing data type

INTEGER
TNJTFTCER*2

ER*4

REAL*4 (same as REAL)
REAL*8

DOUBLE PRECISION (same as

COMPLEX
EX*8 {

Fourth Edition

SPECIFICATION STATEMENTS

LOGICAL
ICAL*1

v is a variable name, array name, array declarator,
symbolic name of a constant, function name, or dummy
procedure name.

REAL*1 .
LOGICAL*2 are F77 extensions. The names INTEGER*4, REAL*
REAL*8, C0MPLEX*8, and LOGICAL*4 are F77 synonyms for t
corresponding FORTRAN 77 data types INTEGER, REA
DOUBLE ERECISION, CDMELEX, and LOGICAL. These synonyms a

ard compatibility of existi\gm m

The storage length given in the type will ordinarily apply to all the
data items in the statement. In F77, lengths may also be specified for
data items singly. When both a single and a general length
specification are given, the single specification takes precedence.
For example:

Statement

ER A*4, B*2

uivalent To

INTEGER*4 (A), INTEGER*2 (B)

INTEGER*4 (C)

Recognition of synonymous data types is provided to ease conversion of
existing programs to F77. INTEGER will normally default to INTEGER*4
(long integer) unless the program is compiled with the -INTS option, in
which case it will default to INTEGER*2 (short integer). LOGICAL will
default to LOGICAL*4 unless the program is compiled with -DOGS, in
which case it will default to L0GICAL*2. See Chapter 9 for compiler
option information.

alize a
tween sla

.a l iz in
ems ne*

item in a type statement, enclose the desired
and insert it immediately after the data item

must f ol

Fourth Edition

EORTRAN 77 Reference Guide

Character Declaration Statements

The CHARACTER type statement has the following format;

CHARACTER [*len [,]] cname [,cname]...

where:

len is an integer constant, or an integer constant expression
in parentheses, len must be equal to between 1 and 32767
inclusive, giving the length of the CHARACTER variable in
bytes. If *len is omitted, the length defaults to 1. In a
dummy argument in a subprogram, len may be replaced by an
asterisk in parentheses. A character item so declared will
take on the length of the corresponding actual argument in the
invoking program unit.
cname is a variable name or a list of variable names, parameter
names, array names, function names, or array declarators.
CTER entities may be initialized in a type statement. CHARACTER

entities having different lengths may be declared in the same type
statement. For example:

Statement

CHARACTER*50 F, G*100, H, J*l

mivalent To

CHARACTER*50 (F), CHARACTER*100 (G)
CHARACTER*50 (H), CHARACTER*! (J)

CHARACTER parameters and arrays are declared as with other data types.

Substrings: A contiguous subset of a CHARACTER data item is known as a
substring. A substring of a variable or array element is specified in
the following ways:

VARNAME (L :H) ARRAYNANE (subscripts) (L :H)

Fourth Edition

SPECIFICATION STATEMENTS

VARNAME(L:H) ARRAYNAME(subscripts) (L:H)

where:

L and H are integer expressions giving the lowest and highest
character positions of the desired substring. If L is omitted,
1 is assumed. If H is omitted, the length of the variable is
assumed. L must be less than or equal to H.

Substrings cannot be extracted from constants and parameters. When a
substring of a constant or parameter is needed, assign the constant or
parameter to a CHARACTER variable, then extract the substring from the
var iab le .

For example, if CVAR = 'ABCDE'. Then:

CVAR (2:5) is equivalent to:
CVAR (:3) is equivalent to:
CVAR (4:) is equivalent to:

'BCDE'
'ABC
'DE'

s: Since the ANSI FORTRAN character substring
ation and Prime's convention for octal constants both use the colon

character, some expressions involving colons are ambiguous. Therefore,
if a program unit with a CHARACTER or IMPLICIT CHARACTER statement
wishes to use octal constants anywhere in a function argument list, you
must specify that function in an INTRINSIC or EXTERNAL statement.

Concatenation: Character entities may be concatenated using the
operator '//'. Here are some examples:

'Z* // CVAR (2:5) is equivalent to: 'ZBCDE'
'ABC // 'XYZ' is equivalent to: 'ABCXYZ'

Assignment: Where lengths do not match in an assignment of character
data, truncation or padding with blanks takes place on the right.
Undefined positions on either side of positions assigned by substring
remain undefined.

In FORTRAN 77, no position may act as both source and destination in a
substring assignment. F77 relaxes this restriction. This extension
must be used carefully, because the source string is not copied before
execution of a substring assignment. The assignment may therefore
encounter its own effects partway through executio:

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

>r example, if K and Q are CHARACTER*!

K = 'A* // 'B* // 'C
Q (3:4) - K (2:3)
K = K // K

/* K
/ * Q
/* K

'ABCbb'
*??BC?'
'ABCbb'

Comparison: Character entities may be compared using the relational
operators. The collating sequence reflects the Prime Extended
Character Set. (See Appendix A.)

IF ('ABX' .LT. (CVAR (2:3)//'ZQ')) GO TO 100

Intrinsic Functions: Various intr insic functions exist to provide
services related to CHARACTER data items. They are described in
Chapter 8.

Input/Output: I/O of CHARACTER data is similar to I/O for the other
data types. Formatted CHARACTER I/O uses the "A" field descriptor.
See Chapter 7.

Fourth Edition, Update 2

SPECIFICATION STATEMENTS

DIMENSION STATEMENT

The DIMENSION statement defines a symbolic name to be an array, and
sets the number of dimensions and bounds of each dimension of the
ar ray.

The DIMENSION statement has the following format:

DIMENSION array declarator [,array declarator]...

where:

array declarator consists of the array name followed by
parentheses that enclose the maximum values for each dimension
of the array. See Chapter 2 for information on array
declarators.

The following DIMENSION statement shows how to declare the dimensions
of three arrays:

DINENSION JARRAY(IO), KARRAY(2,3) , LARRAY(5,6,7)

The first array has a maximum dimension of 10; the second, a value of
2X3; and the third array, a value of 5 X 6 X 7.

Arrays can also be declared in a type statement:

INTEGER JARRAY(10), KARRAy(2,3) , LARRAY(5,6,7)

Fourth Edition

EORTRAN 77 Reference Guide

Statement

Table 3-1
»cification Statement and
-ilation Directive Syntax

Syntax

Fourth Edition

SPECIFICATION STATEMENTS

OOMMDN STATEMENT

The CDMMDN statement is a means of communicating between program units
through a common storage area that can be referenced by two or more
program units.

The CDMMDN statement has the following format:

COMMON [/[cb]/] nlist [[,]/[cb]/nlist] ...

where:

cb is a common block name. If you include cb, this is a named
common block. If you 6b not include cb, this is a blank common
block. If you do not include the first cb, the first two
slashes are optional. cb must not be the same as the name of
any subroutine, function, or entrypoint in the program.

nlist is a list of variable names, array names, and array
declarators. You cannot use the same name more than once
within nlist, nor can you use the names of dummy arguments.

Data items are assigned sequentially within a CDMMDN block in the order
of appearance in the CDMMDN statement (s) defining the block. BIND
assigns all CDMMDN blocks with the same name to the same storage area,
regardless of the program or subprogram in which they are defined.

The length of a OOMMDN block is the number of bytes used by all the
items specified in the CDMMDN statement (s), plus the number of bytes
appended to the block by any EQUIVALENCE statements.

Blank OOMMDN blocks may be of differing lengths. In EORTRAN 77, all
instances of a named CDMMDN block must have the same length. This
restriction is relaxed in F77, as an aid to compatibility with other
extended versions of EORTRAN 77.

F77 extension
ocated in the

When a given CDMMDN block, named or blank, has different lengths in
different program units, the program unit containing the longest
instance of the block must always be loaded first, because BIND
allocates space for a CDMMDN block on the basis of its first
occurrence. Note that a set of program units with CDMMDN blocks could
easily be generated for which no correct load order exists. The
preferred method is simply to make all instances of a OOMMDN block the
same length, by padding them as necessary. No inefficiency of time or
space utilization can result from following this practice.

Fourth Edition

EORTRAN 77 Reference Guide

These restrictions exist on the layout of data items in a CDMMDN block.
• In any CDMMDN block, all data items except CHARACTER and

LOGICAL*!: variables and array elements must begin at a 16-bit
halfword boundary (0, 2, 4... bytes from storage location 0).
Use padding variables as needed to maintain word alignment.

• Every CHARACTER variable or array in a OOMMDN block more than
one segment (128K bytes or characters) in size must have an
element length that is a power of two.

• Every variable and array of any kind in a large CDMMDN block
must be offset by a multiple of its element length from the
start of the CDMMDN block. NO single element may be larger than
one segment. The length of every variable and array element
must divide evenly into the length of a segment.

When an array that spans a segment is passed to a subprogram as
an actual argument, that subprogram must be compiled with -BIG
if that particular array spans the segment boundary in a large
CDMMDN block. (A large CDMMDN block is anything over one
segment in size.) See Arrays as Arguments in Chapter 8.

Fourth Edition

SPECIFICATION STATEMENTS

EQUIVALENCE STATEMENT

The EQUIVALENCE statement specifies that two or more entities within
the same program unit share storage locations.

The EQUIVALENCE statement has the following format:

EQUIVALENCE (nlist) [,(nlist)]...

where:

nlist is a list of two or more variable names, array element
names, and character substring names. Each of the entities in
nlist are allocated in memory beginning at the same location.
When an unsubscripted array name is mentioned, the effect is as
if its first element had been mentioned. EORTRAN 77 requires a
separate subscript for each dimension of an array, but Prime
F77 allows one subscript to be used to denote the whole array.

An EQUIVALENCE statement causes all the items mentioned in each
parenthetical list to be stored beginning with the same byte of
p h y s i c a l s t o r a g e . W h e n v a r i a b l e s o f d i f f e r e n t l e n g t h s a r e
equivalenced, the shorter is stored in the first bytes of the longer.
When specific array elements are equivalenced, the arrays as wholes
become correspondingly aligned.

When data in a COMMON block is equivalenced to other data, some bytes
of the other data may become aligned with storage positions outside of
the CDMMDN block. When this occurs, the block has been extended. Only
extensions to the right (towards higher storage addresses) are legal.

Legal example:

INTEGER I, A(3)
OOMMDN // I
EQUIVALENCE (I, A(l))

This example extends the CDMMDN block to the right (towards higher
storage addresses).

Illegal example:

INTEGER I, A(3)
CDMMDN // I
EQUIVALENCE (I, A(3))

This example attempts to extend the OOMMDN block to the left. This is
illegal and will cause an error message.

Fourth Edition

EORTRAN 77 Reference Guide

Data items already fixed in storage cannot be equivalenced. An
equivalence statement cannot make self-contradictory demands.
Therefore the following examples are all illegal:

INTEGER A(5)
EQUIVALENCE (A(l), A(5))

CDMMDN // A,B
EQUIVALENCE (A, B)

INTEGER A(5), B(5), C(5)
EQUIVALENCE (A(5), B(l)), (B(5), C(l)), (C(5), A(l))

Prime's hardware requires that all CDMMDN block data items except
CHARACTER and L0GICAL*1 variables and array elements must begin at a
16-bit halfword boundary (0, 2, 4...bytes from the start of the CDMMDN
block). NO EQUIVALENCE can violate this rule. Hence the following is
il legal:

CHARACTER*1 CVAR(4)
INTEGER*4 NUM
CDMM)N // CVAR
EQUIVALENCE (CVAR (2), NUM)

Any data item equivalenced to a static data item will itself be static.
In F77f character and non-character data may be equiva
FORTRAN 77 does not allow this practice.

Fourth Edition

SPECIFICATION STATEMENTS

DATA STATEMENT

The DATA statement tells the compiler to put initial values into data
items before program execution.

The DATA statement has the following format:

DATA nl is t /c l is t / [[,] n l is t /c l is t /] . . .

where:

nlist is a list of variables, array names, array elements, substring
names, and implied DO lists, in which any expressions that appear must
be integer constant expressions.

clist is a list of constants and parameters, possibly with repetition
factors. A repetition factor is an integer constant followed by an
asterisk.

The values in each clist are assigned in order to the corresponding
items in nlist. For each item, there must be a value of a type validly
assignable to the item. If a scalar numeric object in nlist is being
assigned a character value from clist, type conversion and character
padding will occur as they would in an assignment statement, but a
compiler error will be generated if truncation is necessary. A type
declaration of CHARACTER cannot be initialized to a numeric value in a
DATA statement. Any implied DO lists and repetition factors present
operate as they would in a list-directed READ statement. For example:

INTEGER A,K, ARR(1:5, 1:5)
DATA A,K/3,4/((ARR(I,J), 1=1,5), J=l,5)/25*5.0/

When large arrays of character data must be initialized, effort can be
saved fcy declaring a separate CHARACTER variable equal in length to the
entire array, equivalencing it to the array, and initializing it with
the concatenation of all the desired initial values. For example:

CHARACTER*2 K(3)
CHARACTER*6 INITK
EQUIVALENCE (K, INITK)
DATA INITK /'ABCDE*/

In the above example, array K now contains the following values

K(1) = 'AB' K(2)=*CD* K(3) = 'E '

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

A string can be used to initialize an entire array, provided that the
string size is less than or equal to the size of the array elements.

Overflow of string size causes an error message. The following program
segment generates an error message due to overflow of string size:

REAL *4 RADIO, RID,DIO
DATA RADIO/'CAD'/, RID/'CBEY'/, DIO/'ABSCLUTELY'/

Here is the error message generated by the above example:

ERROR 398 SEVERITY 4 BEGINNING CN LINE 7
A string of incorrect length is
being used to initialize "DIO."

MAX SEVERITY IS 4

In the example above, DIO is declared to be 4 bytes. However, the
string ABSOLUTELY is larger than 4 bytes. The size of the strings CAD
and OBEY are not larger than the declared size of the variables RID and
RADIO, and are therefore acceptable.

Any data item initialized in a EATA statement, and any data items
equivalenced to it, will be declared static by the compiler. For more
information, see the SAVE statement discussed later in this chapter,
and the -SAVE option in Chapter 2.

In F77 you can initialize named or blank common items outside of a
block data subprogram, using the DATA statement.

F77 also allows variables or symbolic names to be initialized in t*
statements.

PARAMETER STATEMENT

The PARAMETER statement allows you to reference a constant by using a
symbolic name.

The PARAMETER statement has the following format:

Fourth Edition, Update 2

SPECIFICATION STATEMENTS

PARAMETER (p=c [,p=c]...

p is a symbolic name previously typed in any standard way.

c is a constant expression of a type appropriate to the
corresponding p. A constant expression consists only of
constants, parameters, constant expressions in parentheses, and
appropriate operators.

For example:

PARAMETER (TEST = 6.8679)

ANS = TEST/B

Any parameters that appear must have been defined in a previous
PARAMETER s ta temen t . Func t i on re fe rences and non in teg ra l
exponentiations are prohibited. A parameter may not be used to form a
complex constant.

Unless specifically prohibited, parameter names may be used wherever a
constant could be used (including DATA and DIMENSION statements) except
in FORMAT statements. Since parameters are named constants, they may
not be elements of COMMON blocks and cannot be equivalenced. They may
be used in declaring bounds of arrays in COMMON.

EXTERNAL STATEMENT

The EXTERNAL statement allows you to specify subprograms to be passed
as arguments to other subprograms, where they may be used directly, or
declared EXTERNAL and passed again.

The EXTERNAL statement has the following format:

EXTERNAL name [,name]...

where:

name is the name of a user-supplied or library subprogram, or
is a dummy subprogram name.

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Without the EXTERNAL statement, variables would be default-declared and
passed instead.

If you specify an intrinsic function name as EXTERNAL in a program
unit, the name will refer to the user-supplied subprogram, and the
intrinsic function will be unavailable to that program unit. If you
want to pass an intrinsic function to a subprogram, you should use the
INTRINSIC statement that is discussd in the following sections.

It is recommended that the names of any user-supplied subprograms
called from a program unit appear in an EXTERNAL statement in that
unit. This method enhances portability to other systems, where some
intrinsic function might have the same name as a user-supplied
subprogram.

SHORTCALL STATEMENT

The SHORTCALL statement specifies that one or more external subprograms
are to be called using the Prime Shortcall Interface. The external
subprograms named in the SHORTCALL statement must be written in Prime
Macro Assembly Language (PMA), and must conform to the Prime Shortcall
Interface. The F77 calling program and the PMA called program must be
both I-mode programs or both V-mode programs. Refer to the Assembly
Language Programmer's Guide for a complete discussion of this interface
and its implications for the PMA programmer. Refer to Appendix E of
this manual for an example of V-mode and I-mode SHORTCALL routines.

The advantage of shortcalled subprograms is that the mechanisms of
invoking them and passing arguments to them are much more efficient
than the Prime procedure call mechanism by which all F77 subprograms
are normally called. Snail F77 subprograms that are frequently invoked
during the execution of an F77 application are excellent candidates for
conversion to shortcalled PMA subprograms.

An external shortcalled subprogram is invoked the same way any F77
subprogram is invoked, using either a function reference or a CALL
statement.

The SHORTCALL statement has the form:

SHORTCALL subprogram [(n)] [,subprogram [(n)]]

where:

subprogram is the name of an external subprogram that is called by
the Prime Shortcall Interface.

Fourth Edition, Update 2

SPECIFICATION STATEMENTS

n is an integer constant expression indicating the number of
rklfwords of scratch space reserved in addition to the default.
F77 automatically reserves 20 halfwords in every program unit's
stack frame header for use by shortcalled subprograms; if you
specify a value for n, F77 reserves 20 + n halfwords. F77 reserves
additional space by increasing the size of the calling program's
stack frame header by the amount specified by n.

Notes

Subprograms whose names appears in SHORTCALL statements may
not be passed as arguments to other subprograms.

The SHORTCALL feature should be used with caution and
should be used only by programmers who are thoroughly
familiar with IMA and with the Prime Shortcall Interface.

SAVE STATEMENT

The SAVE statement causes the subprogram variables and arrays named in
it to retain their values between invocations (static storage) rather
than losing their values when the subprogram returns (dynamic storage).

The SAVE statement has the following format:

SAVE [v [,v]...]

where:

v is a variable or array name or a COMMON block that is not
part of or equivalenced to a COMMON block. If COMMON block is
used the format is: /COMMON block/. If no vs appear, the save
is taken to include all local data items.

C ii I it'9) i ■ «5 CmSî jii!
In F77, all
Therefore the appearance of a COMMON block name in a SAVE sta
no effect. If a program is compiled with the -SAVE option, all local
data items will be static. A SAVE statement will not have any effect.
If a program is compiled with -DYNM, (the default) all local data it
will be dynamic unless they are saved.

INTRINSIC STATEMENT

The INTRINSIC statement allows the function names specified to be
passed as arguments to other subprograms, that may then reference the
particular function passed.

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

The INTRINSIC statement has the following format:

INTRINSIC name [,name]...

where:

name is the name of an F77 intrinsic (built-in) function.

Without the INTRINSIC statement, variables would be default-declared
and passed instead. No name may appear in both an INTRINSIC and an
EXTERNAL statement, or in more than one INTRINSIC statement, in the
same program unit.

It is recommended that the names of all intrinsic functions referenced
in a program unit be listed in an INTRINSIC statement in that unit.
This practice will result in immediate diagnostic messages if the
program is run on a different system that does not supply all the
needed intrinsics.

BLOCK DATA STATEMENT

The BLOCK DATA statement is the first statement in a BLOCK DATA
subprogram. A BLOCK DATA subprogram is a nonexecutable subprogram that
initializes variables in named COMMON. You have the option of not
providing a name for a BLOCK DATA subprogram; however, if you do
provide a name, it must not be the same as any other name used by any
other block data subprogram. A program may contain any number of BLOCK
DATA subprograms.

The BLOCK DATA statement has the following format:

BLOCK DATA [name]

where:

name is the name of the block data subprogram in which the BLOCK
DATA statement appears.

Initialization of blank COMMON is an F77 extension. The entire block
must be specified in a COMMON statement in the subprogram if any part
of it is to be initialized. Only CDMMDN, EQUIVALENCE, DIMENSION, DATA,
IMPLICIT, PARAMETER, END, INCLUDE, and type statements may appear in a
BLOCK DATA subprogram. The END statement is the last statement in the
subprogram.

Fourth Edition, Update 2

SPECIFICATION STATEMENTS

Notes

The BLOCK DATA statement must appear only as the first
statement of a BLOCK DATA subprogram.

All entities in a named COMMON must be specified.

The named COMMON block may be used only once in any subprogram.

INCLUDE STATEMENT

The INCLUDE statement includes into the compilation stream at that
point the contents of a file whose pathname is "insert-file". This is
useful in avoiding the duplication of code which is required several
times in a program or a series of programs. For example, there may be
several lines of source code, such as common block specification, that
appear in several program units.

The INCLUDE statement is also useful in that it allows multiple users
to access common files. The INCLUDE statement must begin in column 7,
or thereafter, of the source form.

The INCLUDE statement has the following format:

INCLUDE 'insert-file'

Here is an example of the INCLUDE Statement:

INCLUDE 'CIRCLE'
CALL SIRKLE(RADIUS,AREA)
PRINT*, 'THE AREA OF THE CIRCLE IS:1, AREA
STOP
END

SUBROUTINE SIRKLE (RD, ANS)
PI = 3.145929
ANS = PI*RD*2
RETURN
END

In the above example, if the INCLUDE file 'CIRCLE' contained the
following lines of code:

AREA = 0
RADIUS = 0
PRINT*, 'TYPE IN A VALUE FOR THE RADIUS OF THE CIRCLE:'
READ*, RADIUS

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

then, the INCLUDE statement includes those lines of code at the point
indicated.

The program compiles as if it were the following:

AREA = 0
RADIUS = 0
PRINT*, 'TYPE IN A VALUE FOR THE RADIUS OF THE CIRCLE: *
READ*, RADIUS
CALL SIRKLE (RADIUS, AREA)
PRINT*, *THE AREA OF THE CIRCLE IS:1, AREA
STOP
END

SUBROUTINE SIRKLE (RD, ANS)
PI = 3.145929
ANS = PI*RD*2
RETURN
END

The example above demonstrates that the code used in the file 'CIRCLE'
need not be repeated when the INCLUDE statement is used.

An INCLUDE statement may appear nested inside a file named in an
INCLUDE statement. INCLUDE files may be nested up to 32 levels.

Up to 500 INCLUDE statements may appear in a compilation, including
those found inside a file named in an INCLUDE statement.

The coded lines of the inserted file must be comply with the
required order for F77 statements as summarized in Figure 2-1.

The pathname of the inserted file must be enclosed by single
quotes.

At Revision 21.0, F77 supports using INCLUDE$ Search Rules with the
INCLUDE statement. Refer to Appendix G for detailed information
about how to use the search rules with the INCLUDE statement.

Fourth Edition, Update 2

SPECIFICATION STATEMENTS

NAMELIST STATEMENT

Namelist is a convenient method for performing seir-iaoeung
input/output through the use . of READ and WRITE statements. The
basic unit of namelist I/O is the namelist block. A namelist block

a group of variables that namelist treats as unit. Any variable
at is to be read or written using namelist must belong to a
melist block.

_ist block is established using a NAMELIST statement. The
NAMELIST statement has the following format:

,IST /name/ variable [,variable]...

e is the symbolic name of the namelist block.

rariables are the data items making up the block.
terns are allowed.

247 data

is an example of the NAMELIST statement:

NAMELIST /SHIP/ I,K,SPEED

ou can see, the variables are typed in any standard way. A
aelist variable may also be part of a COMMON block, and may belong to

ntore than one namelist block. There may be any number of namelist
blocks. F77 allows up to 247 entries to be present in a NAMELIST

**> NO subscripts may appear in a NAMELIST statement.
1st names and keywords in lowercase are automatically converted to
rcase at runtime only.

lore information on using the namelist-directed I/O statement, see
:er 6.

,ER CONTROL DIRECTIVES

The following statements are F77 extensions. They provide a means of
controlling source-listing generation from within a program, and of
directing the compiler to insert files into the source program.

The format of the NO LIST statement is

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

I&VMIIto

a source listing of any kind has been specified in the compiler
options, encounter of a NO LIST statement will suppress generation of
the listing for source lines following the statement.

-o source listing has been specified, NO LIST has no effect.

LIST Statement

le LIST statement reverses the effect of a NO LIST statement.
Source-listing generation resumes (or begins) following the LIST
statement.

LIST statement will not of itself cause source listing to be
generated. An appropriate compiler option must have been given. If
one was not, LIST has no effect.

FULL LIST Statement

s statement is an obsolete equivalent to LIST. It is supported
compatibility with ETN, and should not be used in new programs.
nppendix C for a discussion of ETN/F77 compatibility.

Mm
The $INSERT statement inserts the contents of a file whose pathname is
•insert-file' into the compilation stream at the point where the
$INSERT statement is located. $INSERT statements can be nested up to a
32 level depth.

$INSERT is commonly used for:

Fourth Edition, Update 2

SPECIFICATION STATEMENTS

-ograms

j Frequently used statement functions

Data initialization statements

Numeric key definitions, especially for the file management
system, applications library, MIDAS, MIDAS PLUS, PRISAM, and so
on.

The $INSERT statement has the following format:

INSERT ' insert-file'

Unlike other statements, the $INSERT directive must begin in column

7 allows up to 500 $INSERT files to be included in one source fi

Revision 21.0, F77 supports using search rules with the $INSERT
statement. Refer to Appendix G for detailed information about using
the Search Rules with the $INSERT statement.

Note

The coded lines of the inserted file must be comply with .
required order for F77 statements as summarized in Figure 2-1.

•e is an example of the $INSERT Statement:

3SERT 'CIRCLE'
CALL SIRKLE (RADIUS, AREA)
PRINT*, 'THE AREA OF THE CIRCLE IS:', AREA
STOP
END

SUBROUTINE SIRKLE (RD, ANS)
PI = 3.145929
ANS = PI*RD*2
RETURN
END

the above example, if the $INSERT file 'CIRCLE' contained the
allowing lines of code:

AREA = 0
RADIUS = 0
PRINT*, 'TYPE IN
READ*, RADIUS

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

then the $INSERT statement includes those lines of code at the point
i n d i c a t e d . ^
The program compiles as if it were the following:

AREA =. 0
RADIUS = 0
PRINT*, 'TYPE IN A VALUE FOR THE RADIUS OF THE CIRCLE:'
READ*, RADIUS
CALL SIRKLE(RADIUS,AREA)
PRINT*, 'THE AREA OF THE CIRCLE IS:', AREA
STOP
END

SUBROUTINE SIRKLE (RD, ANS)
PI = 3.145929
ANS = PI*RD*2
RETURN
END

The example above demonstrates that the code used in the
need not be repeated when the $INSERT statement is used.

Fourth Edition, Update 2

Assignment
Statements

This chapter discusses the use of assignment statements to perform the
following tasks in your program:

• To compute and store calculations.

• To assign a constant to a storage location.

• To copy the contents of one storage location to another.

• To assign statement labels to integer variables.

An assignment statement is an executable statement that specifies an
expression whose value is to be computed and assigned to a variable to
the left of the equals (=) sign. The direction of evaluation of an
assignment statement is always from the right of the equals sign to the
l e f t .

There are four kinds of assignment statements:

• Arithmetic

• Character

• Logical

• Statement label (ASSIGN statement)

Fourth Edition

EORTRAN 77 Reference Guide

The target of the assignment statement sign must always be a predefined
variable or array element name.

The variable or array element receiving an arithmetic value can
be type INTEGER*?, INTEGER*4, REAL, DOUBLE PRECISION, REAL*16,
COMPLEX," or CDMHiEX*16. The variable or array element
receiving a logical value must be type LOGICAL. The variable,
element, or substring receiving a character value should be
type CHARACTER.

ARITHMETIC ASSIGNMENT STATEMENT

The arithmetic assignment statement has the following format:

target = arith-expr

where:

target is the name of a variable or array element of type
GER*2, INTEGER*4, REAL, DOUBLE PRECISION, REAL *16,

COMPLEX, OR dDMPLEX*16.

arith-expr is an arithmetic expression

If the data types in the assignment statement differ, E77 will not
assign the value of arith-expr directly. Instead, F77 will convert the
value of arith-expr to the type of target, and then assign the value.
Table 4-1 describes the conversions and assignments carried out in such
cases.

Here are some examples of arithmetic assignment statements:

SUM = (X + Y) /*real variable SUM receives
the sum of X + Y.

A(I) = B**4.1 /*element I of array A receives
the value of B**4.1

Fourth Edition

ASSIGNMENT STATEMENTS

Table 4-1

Conversion Rules for Mixed-type Assignments
(The routines are described on the following page)

Value
DOUBLE

ASSIGN EXTEND FLOAT DELOAT
ASSIGN ASSIGN ASSIGN

T R U N C A S S I G N E L O AT D F L O AT
A S S I G N A S S I G N A S S I G N

R E A L S E T X L E T X A S S I G N D F L O A T Q F L O A T A S R E A L
A S S I G N A S S I G N A S S I G N — —

D O U B L E S E T X L E T X F L O A T A S S I G N
ASSIGN ASSIGN ASSIGN

l;'*f m im

FLOAT
SIGN ASREAL

FLOAT
IGN ASREAL ASREAL

Ki^i l is
ASSI rjgfaw ^;^fg»ft)ii

ASSIGN

SFIX* LFIX* ASSIGN* DFLOAT* QFLOAT* ASSIGN
A S S I G N * A S S I G N * A S S I G N * FtvfSIUiCfiil

SFIX*

Fourth Edition

EORTRAN 77 Reference Guide

Table 4-1 (continued)
Conversion Rules For Mixed-type Assignments

Operation Action

ASSIGN Assign value (after any indicated conversion) to the
target.

ASREAL

LFIX

FLOAT

ASSIGN value as above to the real part of a complex
number, and set the imaginary part of the complex
number to zero.

Truncate fractional part and convert result to a
short integer. Overflow may occur.

Truncate fractional part and convert result to a long
integer. Overflow may occur.

Convert value to REAL form. Loss of precision may
occur if the argument was DOUBLE ERECISION,
CDMILEX*16, or 3NTEGER*4. Overflow may occur with
DOUBLE PRECISION or <DMELEX*16.

EXTEND

TRUNC

nvert value to DOUBLE

,nvert value to REAL*16

Prefix the short integer with 16 binary zeros or ones
if the short integer was positive or negative,
respectively. This cannot change the value or sign
of the integer.

Discard the 16 high-order bits of the long integer.
A value outside the short-integer range will be
altered, and possibly changed in sign, by this
operation.

An asterisk affixed to an operation involving a complex
number indicates that the operation is to be performed
on the real part only. The imaginary part is not
involved. When no asterisk is present, the operation
is to be performed on both parts of the number.

Fourth Edition

ASSIGNMENT STATEMENTS

LOGICAL ASSIGlttENT STATEMENTS

The logical assigment statement has the following format:

target = logical expression

target is the name of a logical variable or logical array
element.

logical expression is a logical expression that must result in
a value of .TRUE, or .FALSE.

Some examples of logical assignment statements:

OON = A .LT. 3

X = .FALSE.

/*O0N receives .TRUE, or .FALSE,
depending on A.

/*variable X receives .FALSE.

CHARACTER ASSIGNMENT STATEMENT

The character assignment statement has the following format;

target = character expression

where:

target is the name of a character variable, character array
element, or character substring of type CHARACTER.
character expression is a character expression that must be of
character data type whose length need not match target. In
such cases, the value of character expression will be truncated
or blank-extended so that it matches the length of target, then
assigned.

Here are some examples of character assignment statements:

WORD = 'BELLS'

TREE(l) = *MERRY_CHRISTMASI

NAM3 = 'JINGLE' // WORD

Fourth Edition

EORTRAN 77 Reference Guide

ASSIGN STATEMENT

The ASSIGN statement has the following format:

ASSIGN s to i

where:

s is a statement label of an executable statement

i is an integer variable name

An ASSIGN statement must be executed prior to an ASSIGNED GO TO. Once
i. has been assigned, it may be used only in an ASSIGNED GO TO until it
has been given an integer value by an arithmetic assignment. See
Chapter 5 for a discussion of GO TO statements.

Some examples of the ASSIGN statement:

ASSIGN 90 TD NUM /* assigns statement label 90
to variable NUM.

ASSIGN 300 TO POOKA /* POOKA must have been declared
as an integer variable.

Fourth Edition

Control Statements

Your program begins executing with the first executable statement that
appears in the main program and continues executing the statements in
order until a transfer of control interrupts the sequence. A transfer
of control can be in the form of a procedure reference or a control
statement.

This chapter discusses the following control statements:

• GO TO

CONTINUE

• STOP

• PAUSE

For information on the procedure reference statements, FUNCTION, CALL,
and RETURN, see Chapter 8.

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

GO TO STATEMENTS

GO TO statements transfer control to some other executable statement in
your program that may not be the next instruction in the normal
sequence. There are three kinds of GO TO statements:

• Assigned GO TD

Computed GO TO

Unconditional GO TO

Assigned GO TD Statement

An Assigned GO TO statement transfers control to an integer variable
that has been defined as a result of an ASSIGN statement. The integer
variable has a value that is the statement label of an executable
statement in the same program.

The Assigned GO TO statement has the following format:

GOTO i [[,] (s [,s]...)]

where:

i^ is an integer variable name.

s is the label of an executable statement in the program unit
containing the assigned GO TO. The list of s's is optional.
If it appears, the statement label assigned to 1 must be one of
the labels in the list.

The F77 compiler permits 254 labels in an Assigned GO TO.

Here are some examples of the Assigned GO TO statement:

ASSIGN 50 TO NUM
GO TO NUM

/*This is the same as an
unconditional GO TO 50.

ASSIGN 300 TO ISTART
GO TO ISTART, (99,100,300,400) /*This is the same as an

unconditional GO TO 300,

The Computed GO TO Statement
A Computed GO TO statement transfers control to i
corresponding to a value in the Computed GO TO expression.

statement

Fourth Edition, update 2

CONTROL STATEMENTS

The Computed GO TO statement has the following format:

GO TO (s [,s]...) [,] i

i^ is an integer expression.

s is the statement label (an integer number) of an executable
statement appearing in the same program unit as the Computed
GO TO statement. The same statement label may appear more than
once in the same Computed GO TO statement. Control is
transferred to the statement whose label is in the i'th
position in the list of s's. If there is no i'th statement,
control passes to the next executable statement.

Some examples of the Computed GO TO statement:

1 = 2
GO TO (10,20,30,40),I

M = 4
GOTO (99,100,199,200) ,M

/*The next executable statement
is statement 20.

/*The next executable statement
is statement 200.

Unconditional GO TO Statement

An unconditional GO TO statement transfers control to the statement
label of an executable statement in the same program unit.

The unconditional GO TO statement has the following format:

GO TO s

s is the label of an executable statement that is in the same
program unit as the unconditional GO TO statement.

Here are some examples of unconditional GO TO statements:

GO TO 1000 /*Control is transferred to
executable statement 1000

GO TO 90 /*Control is transferred to
statement 90.

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

IF STATEMENTS

IF statements make a comparison and then make a decision based upon
that comparison. IF statements conditionally transfer control or
conditionally execute a statement or a block of statements.

The three types of IF statements are:

• Arithmetic IF

• Logical IF

• BlOCk-IF (IF...THEN, ELSE IF...THEN, ELSE, END IF).

Arithmetic-IF Statement

The arithmetic-IF statement transfers control to
statements based upon the value of an expression.

The arithmetic-IF statement has the following format:

three

IF (exp) labell, label2, label3

where:

exp is an arithmetic expression with an integer, real, or
double precision value.

labell, label2, label3 are labels of executable statements
within the current program unit.

When exp is evaluated, control passes to

labell if the value of exp is negative

label2 if the value of exp is zero

label3 if the value of exp is positive

Fourth Edition, update 2

CONTROL STATEMENTS

Here is an example of the arithmetic-IF statement:

IF (X - 90) 10, 20, 30
A = B * C
A = B / C
STOP

In the above example, if the value (X - 90) is negative, control
passes to the statement at label 10. If (X - 90) is zero, control
passes to the statement at label 20. If (X - 90) is positive,
control passes to the statement at label 30.

The arithmetic-IF statement is considered to be obsolete. Although
this statement is still supported, it is recommended that you use
the block-IF statement instead.

Logical-IF Statement

The logical-IF statement evaluates a logical expression, and then,
based upon one of two possible results, executes a single FORTRAN
statement.

The logical-IF statement has the following format:

IF (exp) stmt

where:

exp is a logical expression.

stmt is any valid executable statement except a DO,
block-IF, ELSE-IF, ELSE, END-IF, or another logical-IF
statement.

If exp evaluates to .TRUE., then stmt is executed. If exp
evaluates to .FALSE., then control passes to the next
executable statement after the logical-IF.

Fourth Edition, update 2

FORTRAN 77 REFERENCE GUIDE

Here are examples of the logical-IF statement:

IF ((SALES .GE. 50.0) .OR. (PROFIT .EQ. 100)) GO TO 999

IF (MAXVAL) CALL SUBR

IF (A .LE. 500) S = S * C

In the above examples, if the value of the logical expression (exp) is
true, then the statement (stmt) is executed.

Block-IF Structure

The block-IF structure evaluates a logical expression, and either
executes or does not execute a group of statements.

A block-IF structure consists of an IF...THEN statement and an END IF
statement. The IF... THEN statement is the first statement. In
addition, the block-IF structure may contain ELSE IF...THEN and ELSE
statements. A block-IF structure may also contain additional
IF...THEN, and END IF statements (see "Block-IF Nesting" below.)

Here are some of the more common constructs that the block-IF structure
may take:

IF exp THEN
statement-group-1
END IF

IF exp THEN
statement-group-1

ELSE
statement-group-2

END IF

IF exp THEN
statement-group-1

ELSE IF exp THEN
statement-group-2

END IF

Fourth Edition, Update 2

CONTROL STATEMENTS

IF exp THEN
statement-group-1

ELSE IF exp THEN
statement-group-2

ELSE
statement-group-3

END IF

where:

exp is a logical expression.

statement-group-i is any number of executable statements (including 0)
which follow an IF...THEN, ELSE IF...THEN, or an ELSE statement.
Statement groups may not follow an END-IF statement.

Statements in the Block-IF Structure: This describes the unnested
situation. See "Block-IF Nesting" belcw for the nested situation.

• An IF,..THEN statement is the first statement in the block-IF
structure. If the logical expression in the IF...THEN statement
is true, then the statement group following the IF...THEN
statement is executed. Control then passes to the next
executable statement following the END IF statement. If the
logical expression in the IF...THEN statement is false, control
drops down to the next statement after the statement group for
the IF...THEN statement. The next statement may be an
ELSE IF...THEN, an ELSE, or an END-IF statement. Each IF...THEN
must be on a line by itself.

• An ELSE IF...THEN statement is evaluated when the logical
expression in the IF. ..THEN statement is false. If the
expression in the ELSE IF...THEN statement is found to be false,
then control is passed on to the next statement after the
statement group for the ELSE IF...THEN statement. If the value
in the ELSE IF...THEN statement is true, then the statement
group associated with the ELSE IF...THEN statement is executed.
Control then passes to the next executable statement following
the END IF statement. There may be any number of ELSE IF...THEN
statements in the block-IF structure (see Block-IF Nesting
below). The ELSE IF...THEN statement is optional.

• The ELSE statement and its statement group are executed only
when all previous logical expressions in either the IF...THEN or
any ELSE IF...THEN statements are false. The ELSE statement is
optional. The ELSE statement may appear only once in each
block-IF structure. When used, the ELSE statement follows the
IF...THEN statement and ELSE IF...THEN statements.

• The END IF statement terminates the entire block-IF structure.
There is only one END IF statement in each block-IF structure.

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Block-IF Considerations: The END statement may not be used within the
block-IF structure.

Transfer of control into a block-IF from outside of that block is
prohibited. Entry may occur only when program execution reaches the
initial IF statement.

When a DO loop is present in a block-IF, it must be wholly contained in
the statement group in which it begins. Similarly, when a block-IF is
present in a DO loop, it must be wholly contained in the body of the DO
loop.

Here is an example of the block-IF structure:

IF (X .GT. 360) THEN
S = S + X - 360
N = N + 1

ELSE IF (X .EQ. 360) THEN
S = S + X
N = N + 1

ELSE IF (X .EQ. Z) THEN
S = S + X + Z
N = N + 1

S = S + X
Z = X + N

END IF

Block-IF Execution: When the logical expression in an IF...THEN,
ELSE IF...THEN, or an ELSE statement is true, the statement group
associated with that expression is executed. Control drops down to the
end of the Block-IF structure.

When the logical expression in an IF...THEN, ELSE...IF, or an ELSE
statement is false, then the statement group associated with that
expression is ignored. Control drops down to the next ELSE IF...THEN,
ELSE, or END IF statement in the block-IF structure.

At most, only one statement group in a Block-IF structure is executed.

block-IF structureBlock-IF Nesting: A block-IF structure may be included , in the
statement group of another block-IF structure. The nested block-IF
structure must be completely enclosed within the statement group. When
Block-IFs are nested, the compiler matches an ELSE statement with the
most recent IF...THEN statement.

The ELSE IF...THEN, ELSE, and END IF statements of a nested block-IF
are local, and do not affect the flow of control of the containing

Fourth Edition, Update 2

CONTROL STATEMENTS

block-IF. Nested block-IFs should be indented to indicate this
independence. It is a good programming practice to indent nested
block-IFs.

Here is an example of nested block-IFs:

IF (X .GT. 360) THEN
S = S + X
IF (Y - Z .LE. 340) THEN

Y = Y - X
ELSE

Y = Y + X
END IF

ELSE
S = S + 1

END IF

The program segment above uses indentation to demonstrate the use of
nesting levels. Use the -NESTING compiler option to see how the
EORTRAN 77 compiler interprets the indentation.

DO STATEMENT

A DO statement sets up a loop that begins at the DO statement and
executes zero or more times. The DO statement executes all the
statements between the DO statement and its corresponding label. The
DO statement has the following format:

DO lab [,] var = intval, maxval [,incr]

where:

lab is the label of an 'executable statement that must follow the DO
statement in the same program unit. This is called the terminal
statement of the DO loop.

var is an integer or real variable, called the DO variable.

intval, maxval, incr are arithmetic constants or expressions that
represent the initial value, the terminal value, and increment
parameters, respectively.

The range of the DO statement includes all the statements between it

Fourth Edition, update 2

FORTRAN 77 REFERENCE GUIDE

and the terminal statement. The terminal statement must not be one of
the following:

• Unconditional or assigned GO TO statement

• Arithmetic IF statement

• Any block IF statement

• RETURN, STOP, or END statements

• DO statement

Execution of a DO Statement

The following steps are followed when a DO statement is executed:

1. intval, maxval, and incr are evaluated to establish values for
the initial, terminal, and increment parameters, respectively,
including conversion to the type of the DO variable, var, if
necessary. If incr is omitted, the increment parametern e c e s s a r y. I f i n c r i s
defaults to a value of one.

mitted, the increment parameter
incr cannot evaluate to zero.

2. The value of the initial parameter is assigned to the DO
var iab le .

3. The iteration count (number of times to execute the body of the
DO loop) is determined by the following expression:

INT ((maxval-intval+incr)/ incr)

If the iteration count is zero or less, the body of the DO loop
will not be executed.

If the type of the DO variable is integer, then the expected
final value that it will contain upon normal termination of the
DO loop will be calculated. This final value is the first
value which var would contain, as a result of normal
incrementation, that is greater than maxval if incr is greater
than zero, or less than maxval if incr is less than zero.

If the type of the DO variable is real, then its final value
will not be calculated.

The DO loop variable must not be altered inside the range of
the loop. A Severity 2 error message appears if the compiler
detects the appearance of the DO-LOOP variable on the lefthand
side of an assignment statement. A Severity 1 warning is
issued if the variable is being passed as an actual argument,
due to its potential for modification.

Fourth Edition, Update 2

CONTROL STATEMENTS

Example:

* The DO variable ID is initialized to equal 3
* The intval is 3
* The maxval is 10
* - when ID => 10 the program stops
* execu t i ng t he l oop and con t i nues
* The incr is 2
* -must be declared if any value other than 1
* The lab, 210, is the statement number (label) of the last
* -statement that will execute as a part of the

- l o o p
DO 210 ID = 3, 10, 2

210 CONTINUE

STOP
END

Execution of the Range of DO Statements

After execution of the DO statement, statements in the range of the DO
loop will be executed, up to and including the terminal statement,
provided that the calculated number of iterations is greater than zero.
The DO variable may not become redefined during execution of the DO
loop. Variables in the expressions for the initial, terminal or
increment parameters can be modified inside the loop without affecting
the number of times the DO loop will execute.

Iteration Control

After completion of the DO loop body, incrementation of the DO variable
by the value of the increment parameter occurs. There are different
methods employed to determine when to terminate execution of the DO
statement:

1. If the type of the DO variable is integer and if the value of
the DO variable has not yet reached the expected final value
computed during processing of the DO statement, then the body
of the DO loop will be executed again.

2. If the type of the DO variable is real, then the iteration
count is decremented ty one and the loop body will be executed
again until the iteration count reaches zero. Note that the
number of actual iterations of a loop controlled fcy a real DO

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

variable may not be what is expected, due to rounding errors.

When iteration control terminates execution of the DO loop, program
control passes to the statement immediately following the last
statement in the loop, and the DO variable retains the value it had
when execution of the loop terminated. Execution of a DO loop may also
be terminated by a statement within the loop that branches out of the
loop. In this case, the DO variable retains its current value.

Nested Loops and Transfer of Control

DO loops may be nested within other loops, provided that the range of
each loop is completely contained within the range of the next
outermost loop. Nested DO loops may share a labeled terminal
statement.

Here is an example which correctly demonstrates the use of nested DO
loops.

D O 4 0 0 M = 1 , 3 /
JO = JO + M
D O 6 0 0 K = 1 , 4 /
JO = JO + K
IF ((K .GT. M) .XOR. (K .GT. J)) LA =2

/* FIRST LEVEL LOOP

/* SECOND LEVEL LOOP

DO 550 L = LA, 5
N = N+ 1
JO = JO + L
PRINT*, JO, N, L

550 CONTINUE
PRINT*, JO, K, N

600 CONTINUE
PRINT*, JO, N, M

400 CONTINUE

/* THIRD LEVEL LOOP

/* END OF THIRD LEVEL LOOP

/* END OF SECOND LEVEL LOOP

/* END OF FIRST LEVEL LOOP

STOP
END

Restrictions on Transfer of Control

Program control may not transfer to a statement within a DO loop;
therefore, extended-range DO loops are not supported. Control may be
transferred from a nested loop to an outer one, tut may not be
transferred from an outer loop inwards. Two or more nested DO loops
can share the same terminal statement. However, any transfer of
control to a statement that is not within the innermost DO loop is
considered to be a transfer from an outer loop into an inner loop.

Fourth Edition, update 2

CONTROL STATEMENTS

because the terminal statement is within the range of the innermost
loop.

Here is an example that demonstrates an invalid attempt to pass control
from outside a DO loop to a label with the range of a loop.

D O 6 0 0 K = 1 , 4 /
JO = JO + K
NUN = 4
IF ((K .GT. M) .XOR. (K .GT. J)) LA =2

/* FIRST LEVEL LOOP

DO 550 L = LA, 5
N = N + 1
IF (NUN .EQ. LA + 2) GO TO 600
JO = JO + L

525 PRINT*, JO, N, L
550 CONTINUE

PRINT*, JO, K, N
IF (NUN .EQ. 4) GO TO 525

600 CONTINUE
PRINT*, JO, N, M

/* SECOND LEVEL LOOP

/* END OF SECOND LEVEL LOOP

/* END OF FIRST LEVEL LOOP

STOP
END

In the example above, the statement

IF (NUN .EQ. 4) GO TO 525

invalidly attempts to pass control from the second level DO loop to the
first level DO loop. However, the statement:

IF (NUN .EQ. LA + 2) GO TO 600

has a valid target label (600). Control is conditionally transferred
outside the loop.

ETN Compatibility of DO Loops

When programs are compiled wit
generate DO loops that execute similarly to those generated by ETN. In
addition to this, F77 does not impose the syntactical restrictions on
the DO statement that FTN does, so that any valid FORTRAN-77 standard
DO statement will be compilable under "-D01".
Differences in the behavior of DOl loops as opposed to FORTRAN-77 I,
are outlined here:

Fourth Edition, update 2

FORTRAN 77 REFERENCE GUIDE

loop to a sequence of one or more statements, the last of which
will transfer control back into the DO loop.

Evaluation of the terminal and increment parameters of the DO
statement occurs differently in different cases:

If these parameters are scalar variables, then they are
reevaluated during each iteration of the loop. Therefore,
modification of them in the range of the DO loop will affect the
number of times the loop executes.

If these parameters are expressions, then they are evaluated
only once during execution of the DO statement, and not during
each iteration. Modification of any variables that appear in
such expressions will not, therefore, affect the number of times
the DO loop executes. Furthermore, such loops cannot define an
extended-range, and F77 will issue a warning to that effect when

DO WHILE Statement

A DO WHILE statement permits loop iteration to execute an indefinite
number of times, based on the value of the logical expression being
true. The DO WHILE statement can have one of the following formats:

Format 1

DO s[,] WHILE(e)

s statement

where:

s is the label of a statement that must physically follow in the
same program unit.

e is a logical expression.

statement is any valid FORTRAN DO loop terminal statement or
END DO.

Fourth Edition, Update 2

CONTRCL STATEMENTS

For example:

N=10
M=l
DO 100, WHILE (M .LT. N)

ARRAY(M) = 1.1
M = M + 1
CONTINUE

Format 2

DO WHILE(e)

END DO

where:

e is a logical expression.

For example:

N=10
M=l
DO WHILE (M .LT. N)

ARRAY(M) = 1.1
M = M + 1

END DO

Execution of a DO WHILE Statement

The DO WHILE statement is different from a DO statement because it
executes for as long as a logical expression contained in the statement
continues to be true.

In the examples above, an array is initialized until the condition in
the DO statement is false. In both cases the condition (M .LT. N)
becomes false when M=10.

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Nested DO WHILE Loops

DO WHILE loops may be nested according to the following conditions:

• Each labeled DO WHILE must be closed with a matching labeled
statement.

• Each unlabeled DO WHILE must be closed with an unlabeled END DO.

An unlabeled END DO may have only one DO WHILE loop.

END DO Statement

The END DO statement can be used to end the range for both DO and
DO WHILE loops. If the END DO statement is used with a DO statement,
the END DO statement must be labeled.

The END DO statement has the following format:

END DO

CONTINUE Statement

In your program, a CONTINUE statement serves as a point of reference,
and merely transfers control to the next executable statement.

The CONTINUE statement has the following format:

CONTINUE

A CONTINUE statement is usually used to indicate the end of the range
of a DO loop; however, you can use it anywhere in your program where
an executable statement is allowed.

For example:

SUM = 6.5
DO 10 K = 1,5

SUM = SUM + A(K)
10 CONTINUE

Fourth Edition, Update 2

CONTROL STATEMENTS

STOP Statement

The STOP statement terminates the execution of your program,

The STOP statement has the following format:

STOP [n]

where:

n is an optional decimal number of up to five digits or a
character constant.

A STOP statement halts program execution, closes all file units
referenced by the program, prints ****STOP n at your termninal, and
returns control to PRIMOS. A STOP statement may appear anywhere in a
program unit. In a main program, an END without a STOP causes a STOP
to occur automatically.

PAUSE Statement

A PAUSE statement temporarily suspends execution of your program until
you or an operator intervenes.

The PAUSE statement has the following format:

PAUSE [n]

where:

n is an optional decimal number of up to five digits, or is a
character constant.

Using this statement will halt your program and display a ****PAUSE n
message on your terminal. Program execution will remain suspended
until you type the PRIMOS command START. Execution begins at the next
executable statement following the PAUSE.

For example:

OK, RESUME CIRCLE
TYPE IN A VALUE FOR THE RADIUS OF THE CIRCLE:

" PAUSE
OK, START
THE AREA OF THE CIRCLE IS:

**** STOP
144.713

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

END Statement

The END statement is the final statement of a program, subroutine
(including a BLOCK DATA subprogram), or external function. It tells
the compiler that it has reached the physical end of the program unit.

The END statement has the following format:

In a main program, END implies STOP if no STOP statement precedes it.
In a subprogram, END implies RETURN if no RETURN statement precedes it,

Fourth Edition, Update 2

Input/Output
Statements,

Data Storage, and
File Types

Input is the transfer of data values from a file to internal storage.
Output is the transfer of data values from storage to a file. Input
and output statements control these transfers, and may also specify the
representation of the data values on the file. In addition to the F77
input/output statements used in the transfer of data, this chapter also
discusses:

• F77 data storage

i Records

• Files and programs

• List and namelist directed I/O

The following discussion is intended as a review, to establish the
context in which FORTRAN I/O commands operate. If you are not familiar
with the features mentioned, please consult one of the suggested
textbooks in Chapter 1.

Input/Output in FORTRAN 77 is based on logical records stored in files.
The physical aspects of record and file storage are not dealt with by
the language. Therefore, the following descriptions are concerned only
with the logical structures involved.

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

F77 DATA STORAGE

A file is a collection of related records. A file may be empty, or may
contain one or more records. Each record is a part of the file because
it contains data items similar to all the other records in the file. A
record has up to 2048 bytes and is the basic unit of data transfer.

Every open file has a pointer. When a file is first opened, its
pointer is positioned before the first record. For data transfer, the
pointer first moves to the beginning of the selected record (direct
access) or the next record in the file (sequential access), then sweeps
across the record as the record is read or written. After data
transfer, the pointer remains at the end of the record just read or
written, or after the endfile record if one was written or encountered.

Types of Records

There are three types of records:

• Formatted

• Unformatted
• Endfile

No file may contain both formatted and unformatted records.

| Formatted Record: A formatted record consists entirely of Prime ECS
characters. Such a record may be read or written only by formatted
input/output statements containing explicit format specifiers.

Unformatted Record: An unformatted record contains data in the same
orm in which it is actually used by the computer. No format list is

used when it is accessed. The data is transcribed directly to or from
the storage medium.

Endfile Record: An endfile record is written by an ENDFILE statement.
It may occur only as the last record of a sequential file. If an
endfile record is encountered during a READ, the system will be
informed that the file has been exhausted. See the discussion of the
ENDFILE statement later in this chapter.

Fourth Edition, update 2

INPUT/OUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

Record Lengths

The record length of formatted records is measured in characters
(bytes) while the length of unformatted records is measured in 16-bit
halfwords. Formatted and unformatted records may be stored in either
fixed or variable length form. No file may contain both fixed and
variable length records.

Fixed Length: A file of fixed-length records is produced when the RECL
(record length) option is given in the OPEN statement creating the
file. All records written to the file will be of the length specified.

of the RECL option uential-access file is an F77

Varying Length: A file of variable-length records is produced when the
RECL option is omitted from the OPEN statement creating the file. Each
record will have the length needed to hold its data, up to the current
maximum record length. See INCREASING MAXIMUM REOORD LENGTH later in
this chapter. Files of variable-length records cannot be used under
direct access.

Implementation: The following information is significant when space
conservation on disk files is a major concern.

Files of variable-length records are kept in compressed ASCII format.
Sequences of blanks are replaced by one instance of the blank
character, a compression indicator, and a repeat count. All such files
are processed through Physical Device 7. Compressed format saves disk
space, but requires some additional processing time to compress and
uncompress the records.
Files of fixed-length records are kept in uncompressed ASCII format.
Records are stored just as they are created by the program, with no
compression. All such files are processed through Physical Device 8.

Uncompressed format can be quite wasteful of space, but I/O on
uncompressed files is faster than on compressed files because no time
is spent compressing and decompressing the records.

Types of File Access
There are two types of file access:

I Sequential

Direct

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Sequential Access: With sequential access, the file pointer can move
only one record at a time, either forward or backward, or it may be
positioned at the beginning of the file.

Direct Access: With direct access, the file pointer may be positioned
to the beginning of any record in the file.

Types of Files

The terms SAM and DAM refer to the basic file organization PRIMDS uses
to implement files. These organizations are not specific to any one
language. The terms sequential access method and direct access method
refer to the two types of file access offered by the FORTRAN 77
language. Either type of FORTRAN file could be implemented using
either PRIMOS file organization. The implementation used is
transparent at the programming level, and is subject to change. See
the Subroutines Reference Guide.

SAM Files: In a SAM file, the records are stored in the order they
were written, and are usually read in that order. New records can be
added only to the end of the file, and records cannot be deleted. SAM
files can be read or written only under sequential access. SAM records
may be of fixed or variable length.

DAM Files: In a DAM file, the records are stored in a manner that
enables direct access. New records can be added anywhere in any order.
Existing records can be deleted by overwriting them. DAM files must be
written only under direct access, but can be read by either direct or
sequential access. DAM records must always be fixed-length. Every
record in a DAM file is identified by a key (a positive integer). This
key is specified when the record is written. Under direct access, a
record is retrieved by giving its key in a direct access READ
statement. Under sequential access, a DAM file acts like a SAM file to
which the records were written in order by key. A record is retrieved
by reading through the file until it is reached.

Caution

A direct access file must not be modified by the EDITOR, EMACS,
or any sequential data transfer statement, or its usefulness
for direct access will be partly or wholly lost.

Fourth Edition, Update 2

INPUT/OUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

Internal Files

Internal files provide a way to convert data from one form to another
within main memory. An internal file is an area of memory where a type
CHARACTER variable, array, array element, or substring is stored. Such
an area acts as an internal file when the name of the data item stored
there is given in place of the file unit number in a formatted,
sequential READ or WRITE statement.
The READ or WRITE proceeds as usual, but the "file" used is the
designated internal storage area, rather than an external file on
secondary storage. Data is transferred to or from the file area, after
conversion as directed by the associated format list. List directed
formatting is not permitted with internal READ or WRITE statements.
After each read or write file the pointer returns automatically to the
beginning of the record.
The characteristics of an internal file are as follows:

An internal file consists of a
array, or character substring.

character variable, character

A record of an internal file is a character variable, an element
of a character array or character substring.

If the file is a character variable, character array element, or
a character substring then it consists of a single record whose
length is the same as the length of either the variable, array
element, or substring. When the file is a character array, it
is treated as a sequence of character array elements, and each
array element is a record of the file. The sequence of the file
records is the same as the sequence of the array elements. Each
record of the file is the same length as the length of an array
element.

EDITING E77 FILES

The PRIMOS EDITOR and EMACS text editing utilities produce and expect
SAM files of formatted, variable-length records. A file created with
these attributes by an F77 program may be edited freely. A file
created by EDITOR or EMACS may be opened with formatted,
variable-length records in an F77 program and modified as desired.
EDITOR and EMACS should not be used to modify a SAM file of
fixed-length, formatted records because they will automatically
compress the file, effectively transforming it to a file of
variable-length records. Neither should they be used on a DAM file,
since they will not maintain the fixed-length records a DAM file
requires. Text editors can be used to examine a fixed-length file
provided it is not modified. EDITOR and EMACS cannot be used to
process unformatted files.

Fourth Edition

FORTRAN 77 Reference Guide

INCREASING MAXIMJM RECORD LENGTH

When the shared libraries are used in linking an F77 program
(unqualified LI command to BIND during linking) records of all types
have a maximum length of 32K bytes. This limit cannot be increased.

When the unshared libraries are used (LI NPFTNLB and LI IFTNLB to BIND
during loading), the maximum record size is initially 256 bytes, but it
may be increased to a maximum of 32K bytes. When records longer than
256 bytes are needed, the PRIMDS I/O Control System (IOCS) must be
notified. Two aspects of IOCS are involved:

• The size specified by the variable in the I/O size-control block
F$IOSZ.

• The size of the I/O buffer F$IOBF. This buffer is discussed
further under DATA TRANSFER STATEMENTS later in this chapter.

Specifications to IOCS must be given in halfwords. To increase the
maximum record length, proceed as follows:

1. Increase the value specified in F$IOSZ to the desired record
length by inserting the following statements into the main
program:

O0MMDN/F$IOSZ/MAXSIZE
INTEGER*2 MAXSIZE/halfwords/

where halfwords is an integer constant giving the desired
record length in two-byte halfwords (half the length in bytes).

Increase the size of F$IOBF to the desired record length by
inserting the following statements into the main program:

GOMMDN/F$IOBF/BUFSIZE
INTEGER*2 BUFSIZE(halfwords)

where halfwords is as above.

Any variable names could be used in place of MAXSIZE and BUFSIZE.

No special action is needed to obtain the maximum record size when
using the shared libraries, since they automatically provide a MAXSIZE
and BUFSIZE of 16K halfwords (32K bytes).

Fourth Edition

INPUT/OUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

Note

The value in F$IOSZ and the size of F$IOBF set an upper size
limit on all records, but do not determine the actual record
size for any particular file. The actual record size for a
fixed-length file is determined by the RECL option in the OPEN
statement for the file. Arguments to RECL must be given in
bytes. For a formatted file, the arguments given must be in
bytes, but for an unformatted (binary) file, the number is in
halfwords. For variable-length files, including the terminal,
it depends on the individual record.

FILES AND PROGRAMS

Before a program can read or write a file, the programmer must
establish a connection between the file and the program. This is
accomplished by assigning a device if necessary, and by opening thefile on a EORTRAN unit.

Assi< a Device

When a file is on the card punch or reader, the paper tape punch or
reader, a magnetic tape drive, or is being written directly to the line
printer without the use of SPOOL, the device must be assigned, using
the PRIMDS ASSIGN command, before program execution begins. See the
Prime User's Guide.

Opening a File on a File Unit
A file unit is a numbered channel through which data passes between a
program and a file. Every file except the user's terminal, which is
always open on EORTRAN unit 1, must be connected to a file unit prior
to data transfer. There are three ways of doing this:

• With the EORTRAN 77 OPEN statement,
way.

This is the recommended

With a call to one of the PRIM)S file-opening subroutines.
These provide more power and flexibility than the EORTRAN 77
OPEN, but these advantages are usually not needed. See the
Subroutines Reference Guide for details on the PRIMDS
file-opening subroutines.
With a PRINDS OPEN command executed before the program is run.
This is known as preconnection.

Fourth Edition

EORTRAN 77 Reference Guide

A preconnected file may be opened again within the program, and
additional attributes added to the connection. In case of conflicting
attributes, those specified within the program take precedence.

Caution

PRIMDS and F77 use different numbering systems to describe
their set of file units. When a file unit is referenced in
F77, its EORTRAN unit number must be used. When it is
referenced in a PRIMDS subroutine call, the corresponding
PRIMDS Funit number must be given instead. Beware of confusing
the two descriptive systems. See Table 6-1.

Integer arguments to most ERIMOS subroutines must be INTEGER*2.

Fourth Edition

INPUT/OUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

Table 6-1
Devices and Their Default EORTRAN Unit Numbers

EORTRAN
Unit Number PRIMDS Device

1 User terminal
2 Paper tape reader or]punch
3 MPC card reader
4 Serial line printer
5 Funit 1
6
7

Funit 2
Funit 3

8 Funit 4
9
10
11
12
13
14
15

Funit 5
Funit 6
Funit 7
Funit 8
Funit 9
Funit 10
Funit 11

16
17
18
19

Funit 12
Funit 13
Funit 14
Funit 15

20 Funit 16
21 9-track magnetic tape unit 0
22 9-track magnetic tape unit 1
23 9-track magnetic tape unit 2
24
25

9-track magnetic tape
7-track magnetic tape

unit 3
unit 0

26
27
28

7-track magnetic tape
7-track magnetic tape
7-track magnetic tape

unit 1
unit 2
unit 3

29 Funit 17

139 Funit 127
140 Printer unit 0
141 Printer unit 1

The mapping of EORTRAN un i t numbers> to PRIMDS devices shown here may be
altered for the duration

EV. See the
of a program through a call to the PRIMDS
Subroutines Reference Guide.Subroutine AITD

Fourth Edition

EORTRAN 77 Reference Guide

FILE OPERATIONS

The possible operations on a file and the statements that accomplish
the operation are:

• Create a new file (OPEN).

• Access an old file (OPEN).

• Change file-connection attributes (OPEN).

• Determine current status and attributes of a file (INQUIRE).

• Transfer data to/from a file (READ, WRITE, PRINT).

• Indicate the end of a file (ENDFILE).

• Reposition the file pointer (BACKSPACE, REWIND).

• Disconnect from a file (CLOSE).

• Delete a file (Options in OPEN and CLOSE).

The statements that perform these operations are divided into three
categories:

• File control statements:

OPEN
CLOSE
INQUIRE

Device control statements:

ENDFILE
BACKSPACE
REWIND

Data transfer statements:

READ
WRITE
PRINT

Fourth Edition

INPUT/OUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

FILE OONTROL STATEMENTS

File control statements establish, alter, or read out the current
attributes and status of a file. In file control statements, all
integer arguments must be INTEGER*4 and all logical arguments must be
LOGICAL*4. An argument that is not an expression may be either a
variable or an array element.

OPEN Statement

An OFEN statement may be used to create a new file and establish its
basic properties, or to connect a file to a file unit and establish the
properties of the connection. For a new file, one OPEN statement will
perform both these functions. The same file may be connected with
different properties at different times, but must always be closed
before it is reopened. The BLMK='s specifier is the only specifier
that you can change from its current value to a new value without
terminating the connection of a file to a unit.
The OPEN statement has the following format:

OPEN ([UNIT=]unit# [,FILE= filename] [,STATUS= stat] [,ACCESS= ace]
[,EORM= fm] [,RECL= reclngth] [,BLANK= blnk] [,ERR= label]
[,IOSTAT= ios] [,ACTIDN= : ' '

UNIT= unit# specifies the logical unit you want to open.

FILE= filename specifies the name of the file to be connected
to the unit.

STATUS= stat specifies the status of the file to be opened.

ACCESS= ace specifies whether the type of file access is
sequential or direct.
EORte= fm specifies whether the file is being connected for
formatted or unformatted I/O.

RECL= reclngth specifies the logical record length of a file.
BLANK= blnk specifies the interpretation of blanks in numeric
input fields.

Fourth Edition

EORTRAN 77 Reference Guide

ERR= label specifies the transfer of control if an error
occurs.

IOSTAT= ios specifies an error status indicator.

The options used may be given in any order, except that if UNIT= is
omitted, unit# must appear first. The options, their defaults, and the
data types required for the arguments, are described in Table 6-2.

The following is an example of the OPEN statement:

INTEGER*4 STATVAL
CHARACTER*20 ACCTYIE
ACCTYPE = 'SEQUENTIAL'
OPEN (10, FILE= 'YORD*, STATUS= 'OLD', ACCESS= ACCTYPE,
+ EDRM= 'FORMATTED', RECL= 25, ERR= 999, IOSTAT>= STATVAL)

An existing file named YORD is opened for formatted sequential access
on EORTRAN unit 10. The record length is 25. Should a numeric field
containing blanks be read from the file, the blanks will be deleted.
Should an error occur — for instance if the file does not in fact
exist, or unit 10 is already in use — control will transfer to
Statement 999, and STATVAL will be given a positive value.

PRIMDS File-opening Subroutines: These permit files to be created
interactively at runtime, allow files to be opened with various
protection attributes, and provide other services additional to those
of the EORTRAN 77 OPEN statement. See the Subroutines Reference Guide.
See also the Caution under FILES AND PROGRAMS earlier.

Fourth Edition

INPUT/OUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

Table 6-2
OPEN Statement Options

Option Argument Data-type Results of Arguments Specified

UNIT=

FILE=

Expression File is opened on
specified.

the EORTRAN unit

Character Expression The file has the name specified. A
pathname may be used. If no FILE= is
specified for a non-scratch file,
the file will be named F#nnn where nnn
is the number of the file unit on which
the file was opened.

STATUS= Character Expression 'OLD'

SCRATCH1

UNKNCWN':

S p e c i fi e d i f t h e fi l e
already exists.

Specified if the file is
being created. A filename
must be specified using the
FILE= option.

File is temporary: it will
be automatically deleted at
program end. No filename
may be specified.

(Default) Specified if the
status is not known to the
programmer. The processor
w i l l d e t e r m i n e t h e
appropriate status.

ACCESS= Character Expression 'SEQUENTIAL1:

DIRECT' :

EORM= Character Expression 'FORMATTED'

'UNFORMATTED'

(D e f a u l t) F i l e i s
connected for sequential
access.

File is connected for
direct access.

(D e f a u l t u n d e r
sequential access) File
i s c o n n e c t e d f o r
formatted data transfer.

(Default under direct
access)File is connected
for unformatted data
transfer.

Fourth Edition

EORTRAN 77 Reference Guide

Table 6-2 (continued)
OPEN Statement Options

Option Argument Data-type Results of Arguments Specified

RECL= Integer*4 Expression Sets record length for a file of
fixed-length records in words. Must be
omitted for a file of variable-length
records. Use in sequential access files
is an F77 extension. Required in
direct access files. See page 6-3 for a
discussion of record lengths.

BLANK= Character Expression This item specifies treatment of blanks
in numeric input fields when data is
read into the file.

Statement Label

'NULL': (Default) All blanks are
deleted, and digits compressed
to the right side of the input
field. An all-blank field will
be interpreted as a 0 value.

'ZERO': All but leading blanks are
converted to 0's, as in EORTRAN
66.

Control transfers to statement specified
if an error occurs during execution of
the OPEN statement.

IOSTAT= Variable Set to 0 if the OPEN statement executes
successfully. Set positive on error in
OPEN-statement execution.

Character Expression Allows files to be opened for reading
only, writing only, or both.
READ

WRITE

READ/WRITE

Allows reading and f il
positioning operation
to be performed.

Allows writing and file
positioning operationsto be performed.

(Default) Allows all
types of I/O operations
to be performed.

Fourth Edition

INPUT/OUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

CLOSE Statement

The CLOSE statement disconnects a file from a unit, regardless of the
number of times you've reopened this file and unit. The CLOSE
statement has the following format:

CLOSE ([UNIT*]unit# [,STATUS= stat] [,ERR= label] [,IOSTAT>= ios])

where:

ERR= and IOSTAT= have the same meanings as in the OPEN
statement.

STATUS= determines the final disposition of the file.

The argument stat is a character expression which may have the values

•KEEP* The file will be retained after it is closed. This
is the default for non-SCRATCH files, and must not be
given for SCRATCH files.

'DELETE' The file will be deleted after it is closed. Default
for SCRATCH files.

The options used may be given in any order, except that if UNI/P= is
omitted, unit# must appear first.
When execution terminates normally, all files opened or referenced in
the program (except OOMD files) are automatically closed. However,
when execution terminates due to an error, all open files remain open.

Fourth Edition

EORTRAN 77 Reference Guide

INQUIRE Statement
An INQUIRE statement is used to ascertain the properties of a file, or
of its connection to a file unit. The INQUIRE statement has the
following format:

INQUIRE (FILE= filename or [UNIT>=]unit# [,IOSTAT>= ios]
[,ERR= s] [,EXISTS ex] [,OPENED= od] [,NUMBER= num]
[,NA*ED= nmd] [,NAM3= fn] [,ACCESS= ace]
[,SEQUENTIAL^ seq] [,DIRECT* dir] [,EORM= fm]
[,FORMATTED* fmt] [,UNFORMATTED= unf] [,RECL= rel]
[,NEXTREC= nr] [,BLANK= blnk])

where:

FILE= filename specifies the name of the file being inquired
>ut.

UNIT>= unit* specifies the number of the logical unit being
inquired about.

3DSTAT= ios specifies an error status indicator.

ERR= s specifies the transfer of control if an error occurs.

EXIST* ex specifies whether a file or unit exists.

OIENED= od specifies whether a file or file unit is open.

NUMBERf num specifies whether a logical unit is connected to a
fi l e .

NAMED= nmd specifies whether a file or unit has a name.

NAME= fn specifies the name of the file being inquired about.

ACCESS= ace specifies whether the type of file access is
sequential or direct.

SEQUENTIAL^ seq specifies whether sequential access is allowedile.f £CT it*

DIRECT= dir specifies whether direct access is allowed for the
H i e :

FQRM= fm specifies whether the file is being connected for
formatted or unformatted I/O.
FORMATTED* fmt specifies the record type of the file.

UNFORMATTED* unf specifies the record type of the file.

Fourth Edition

INPUT/OUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

RECL= rel specifies the record length of the file for direct
access.

NEXTRO nr specifies the number of the next record in the file.

BLANK= blnk specifies the interpretation of blanks in numeric
input fields.

Each option acts as a question. When the INQUIRE statement executes,
the variable you supply for each option is set to a value that answers
the question the option asks. The correct data types for the
variables, and the meanings of the various responses, are described in
Table 6-3.

The file must be specified by name (INQUIRE by name) or unit (INQUIRE
by unit) but not both. Options may appear in any order, but no option
may appear more than once. If FILE* (or UNIT*) is omitted, the
filename (or unit#) must appear first.

A variable or array element that may become defined or undefined as a
result of its use in an INQUIRE statement, or any associated data item,
must not be referenced by any other option in the same INQUIRE
statement.

Fourth Edition

EORTRAN 77 Reference Guide

Table 6-3
INQUIRE Statement Options

Specifier Argument Data Type Significance of Possible
Values

FILE=

UNIT=

IOSTAT>=

Character Expression Specifies file by name.

!ger*4 Expression

tger*4

Spec i fies fi l e by un i t
number.

Zero: no error
exists.

cond i t i on

EXIST*

OPENED*

NUMBER=

Statement number

NAMED*

Positive: error condition
exists.

C o n t r o l t r a n s f e r s t o
statement indicated if error
occurs during INQUIRE
statement execution.

.TRUE.: the file exists (for
INQUIRE by name) or the unit
exists (for INQUIRE by
un i t) .

.FALSE.: the file or the
unit does not exist.

.TRUE.: the file is open
(INQUIRE by name) or the
file unit is open (INQUIRE
by unit).

.FALSE.: the file or the
unit is not open.

Variable supplied is set to
the file's unit-number. If
there is none, variable
becomes undefined.

.TRUE.: the file has a name.

NAME= Character

.FALSE.: the unit has no
name.

Variable is set to the
filename. If none or file
not connected, variable
becomes undefined.

Fourth Edition

INPUT/OUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

Table 6-3 (continued)
INQUIRE Statement Options

Specifier Argument Data Type Significance of Possible
Values

Character

SEQUENTIAL*; Character

'SEQUENTIAL': file open for
sequential access.

'DIRECT': file open for
direct access.

Becomes undefined if file is
closed.

'YES': file can be connected
for sequential access.

'NO': cannot connect file
for sequential access.

•UNKNOWN': suitability of
the file for sequent ial
access cannot be determined.

Character 'YES': file can be connected
for direct access.

' N O ' : fi l e c a n n o t b e
connected for direct access.

'UNKNOWN': suitability of
fi l e f o r d i rec t access
cannot be determined.

Character 'FORMATTED': open for
formatted data transfer.
' UNFORMATTED': open for
unformatted data transfer.

EORMATTED= Character

Becomes undefined if file is
not open.

'YES*: file consists of
formatted records.

'NO' : fi le cons is ts o f
unformatted records.

'UNKNOWN': record type
cannot be determined.

Fourth Edition

EORTRAN 77 Reference Guide

Table 6-3 (continued)
INQUIRE Statement Options

Spec i fie r Argument Data Type Significance of Possible
Values

UNFORMATTED* Character

RECL=

NEXTREO

BLANK= Character

'YES': file consists
unformatted records.

'NO': file consists o
formatted records.

'UNKNOWN': record type
cannot be determined.

Variable is set to the
record-length for which the
file is open. Becomes
undefined if file consists
of varying-length records or
is closed.

Variable is assigned the
value n+1 where n is the
record number of the last
record read or written on a
file connected for direct
access. If no records have
been read or written, the
variable is set to 1. If
the file is not connected
for direct access, or if the
position of the file pointer
is indeterminate due to a
previous error, the variable
becomes undefined.

'ZERO': non-leading blanks
in numeric fields will be
converted to 0's.

'NULL': non-leading blanks
in numeric fields will be
deleted.

If the file is not open for
formatted data transfer, the
variable becomes undefined.

Fourth Edition

INPUT/OUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

DEVICE CONTROL STATEMENTS

These statements apply only to sequential (SAM) files. They reposition
the file pointer, either physically (file on tape) or logically (file
on disk), or write the endfile record that prevents a device from
reading past the end of a file.

BACKSPACE Statement

The BACKSPACE statement moves the pointer of a file open for sequential
access back to the beginning of the previous record. The BACKSPACE
statement has the following format:

BACKSPACE unit#

BACKSPACE ([UNIT*] unit# [,IOSTAT>= ios] [,ERR= label])

where:

unit# is an external unit identifier

UNTE= unit# is an expression that evaluates to the integer
number of the unit you want to backspace. UNIT= can be omitted
if unit# is the first argument.

IOSTAT* ios causes ios to become set to 0 if the BACKSPACE
statement executes successfully, or, set positive on error in
BACKSPACE statement execution.

ERR* label is a statement label, label where control will
transfer to on an error.

BACKSPACE may be performed:

© On any formatted file, except that records written using
list-directed I/O may not be backspaced over.

• On any unformatted file having a fixed record-length (RECL size
specified in the OPEN statement).

Fourth Edition

EORTRAN 77 Reference Guide

When a file pointer is positioned after the endfile record, as is
the case after the ENDFILE condition has been raised, BACKSPACE
will reposition the file pointer before the endfile record. When a
file pointer is at the initial point of the file, BACKSPACE has no
effect .

The BACKSPACE statement cannot be used on an unformatted file with
a variable record length.

Fourth Edition

INPUT/OUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

REWIND Statement

The REWIND statement repositions the file pointer to the initial
point of a file, either by physically rewinding a tape, or by
resetting a disk file's logical pointer. The REWIND statement has
the following format:

REWIND unit#

REWIND ([UNIT*]unit# [,IDSTAT= ios] [,ERR= label])

where:

unit# is an external unit identifier

UNIT>= unit# is an expression that evaluates to the integer
number of the unit you want to rewind. UNIT>= can be
omitted if unit# is the first argument.

IOSTAT>= ios causes ios to be set to 0 if the REWIND
statement executes successfully. Set positive on error in
REWIND statement execution.

ERR* label is a statement label, label where control will
transfer to on an error.

When a file pointer is at the initial point of the file, REWIND has no
e f f e c t .

Fourth Edition

EORTRAN 77 Reference Guide

ENDFILE Statement

The ENDFILE statement writes a device-specific endfile record on the
file connected to the FORTRAN unit unit#. The pointer is left
positioned after the endfile record. This statement can also be used
to truncate disk files. The ENDFILE statement has the following
format:

ENDFILE unit#

ENDFILE ([UNIT=]unit# [,IOSTAT= ios] [,ERR= label])

where:

unit# is an external unit identifier

UNIT* unit# is an expression that evaluates to the integer
number of the unit you want to write an endfile record. UNIT*
can be omitted if unit# is the first argument.

IOSTAT)* ios causes ios to be set to 0 if the ENDFILE statement
executes successfully. Set positive on error in ENDFILE
statement execution.

ERR* label is a statement label, label where control will
transfer to on an error.

The following rules apply to the ENDFILE statement:

• On a sequential tape file, an endfile record must be explicitly
written following the last data record.

• On a sequential disk file, the computer will supply an endfile
record automatically whenever one is appropriate. However, use
of an explicit ENDFILE statement for such files is strongly
recommended, for compatibility with other systems.

• On a DAM file, no endfile record should ever be written. If one
is, unpredictable and undesirable results will occur.

Fourth Edition

INPUT/OUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

DATA TRANSFER STATEMENTS

These statements control the actual transfer of data between files and
program variables. READ transfers data from files. WRITE and PRINT
transfer data to files.

How a Data Transfer Statement Works

Data is not transferred directly between files and program variables.
In a READ, the current record is first transferred from the file to the
EORTRAN I/O buffer F$IOBF, which resides in main memory. The EORTRAN
I/O system then scans F$IOBF (using a pointer similar to a file
pointer), reads out the separate data items, edits them if the READ is
formatted, and assigns them to the appropriate variables. In a WRITE,
the order is reversed: the data items are edited or transferred into
F$IOBF, then the contents of F$IOBF are written as a whole to the file.

Usually F$IOBF is scanned sequentially. However, the T edit-control
descriptor can be used in a formatted data transfer to scan it in any
desired order. See Edit-Control Descriptors in Chapter 7.

For simplicity, the following descriptions will not mention F$IOBF,
since you do not need to be concerned with it except when its size must
be increased (See INCREASING MAXIMJM RECORD LENGTH above) or the T
descriptor is used.
Data transfer statements may be used to convert data from one type to
another. See Internal Files above.

Note

A function must not be referenced anywhere in a data transfer
statement if the function itself causes execution of a data
transfer statement.

Fourth Edition

EORTRAN 77 Reference Guide

READ Statement
A READ statement transfers data from an internal file,
statement has the following formats:

Sequential: READ format [,input list]
READ ([UNIT*]unit# [,[FMT=]format] [,END= label]
[,ERR= label] [,IOSTAT>= ios]) [input list]

ANSI direct: READ ([UNIT*]unit# [,[Fm>=]format] ,REO= record#
[,END=label] [,ERR=label] [,IOSTAT=ios]) [input list]

IBM direct: READ (unit#*record* [,[FMT=]format] [,END= label]
[,ERR= label] [,IDSTAT= ios]) [input list]

The unit# is an integer expression specifying the EORTRAN unit to be
read. It must be present. All other items are optional. An asterisk
may be given for unit#. This is equivalent to specifying EORTRAN unit
1, the terminal.
If a format is present, the read is formatted. Otherwise it is
unformatted. A format may be any of the following:

• The statement number of a FORMAT statement (See Chapter 7 for a
discussion of the FORMAT statement.)

• An INTEGER variable that has been ASSIGNed such a number

• A CHARACTER array name, array element, variable, or constant

• A fixed-length CHARACTER expression
• An asterisk, denoting list-directed I/O

When a format consists of any character entity, the entity must contain
the same format list, including outer parentheses, that would appear
following the keyword FORMAT in an ordinary EORMAT statement. Onlylose positions that will actually be referenced during data transfer
need be defined. Any data at other positions will be ignored. If an
unsubscripted array is used, the format list will be obtained from theconcatenation of all its elements. Blanks are of no significance in
any type of format list. Widths greater than 255 for the transfer of
character data may be specified in this style of format.

For example:

READ (UNIT, »(A300)') CHAR_STR

Fourth Edition

INPUT/OUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

A record* is an integer expression. If a record* is present, the READ
statement is a direct-access READ; otherwise it is a sequential-access
READ. Any file may be read sequentially, but only a file created for
direct access (DAM file) can be read by direct access.

If END* label appears, control will transfer to the statement label
specified by label (an integer constant) if endfile should occur during
the READ. Do not specify END* for a direct-access read.

If ERR* label appears, control will transfer to label if an error
should occur during the READ.

• A positive value if an error occurred

• Zero if the READ executed successfully

• A negative value if endfile was encountered and no error
occurred

Note

In an IBM direct READ, unit*'record* must be the first item in
the list.

If UNIT* is omitted from a sequential or ANSI direct READ,
unit* must be the first item in the list.

If FMT= is omitted from any formatted READ, format must be the
second item in the list, and UNIT*= must not appear.

In all other cases, the items may appear in any order.

¥a»*\+*i*\4.
ding

value never
appears alone, but is always labeled with the name of the variable that
has the value. On input, namelist allows runtime selection of the
variables to the values that will be assigned, and provides free-format
assignment similar to that of list-directed I/O.
this section for a complete description of namelist.

Input Lists: An input list is a list of variables, arrays, array
elements, and character strings. These data items provide the
destination of the data transferred in a READ statement. An input list
may be empty, in which case the record is read but skipped. Redundant
parentheses may not appear in an input list.

Fourth Edition

FORTRAN 77 Reference Guide

Input lists may contain implied DO loops, to simplify assignment ofdata to arrays. An implied DO follows the same rules as an ordinary
DO. The DO loop control values may have been read in at an earlier
stage of the READ statement. Implied DO loops may be nested; for each
implied DO, a set of parentheses must exist surrounding it, the array
names it references, and any DO loops nested within it. An implied DO
must be preceded by a comma.

Array elements not specifically referenced in a READ remain unchanged.
If an array name appears without indexes, the computer will generate
implied DO loops to scan it in storage order. Assumed-size dummy
arrays may not appear in input lists.

Input list examples:

DIMENSION ARR(-1:10,-1:10), VEC(5)

READ(lf200) ARR

is equivalent to:

READ(1,300) ((ARR(I,J), I=KL,10), J=-l,10)

Fourth Edition

INPUT/OUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

WRITE Statement

A WRITE transfers data to a file. The WRITE statement has the
following formats:

Sequential: WRITE ([UNIT*]unit# [,[FWT=]format] [,ERR= label]
[,IOSTAT= ios]) [output list]

ANSI direct: WRITE ([UNIT*]unit# [,[FTCP=]format] ,REC= record*
[,ERR= label] [,K>STA!I>= ios]) [output list]

IBM direct: WRITE (unit*'record* [,[FTCT=]format] [,ERR= label]
[,IOSTAT= ios]) [output list]

WRITE statements differ from READ statements primarily in the direction
of data transfer. The unit*, format, record*, ERR*, and IOSTAT>=
specifiers have the same significance as in a READ statement. END* is
not an option, and ios will never become negative, because endfile
cannot occur when a file is written.

The rules governing omission of UNIT* and ETfl>= are the same as for a
READ statement.

Namelist for WRITE: A namelist block may be output with a WRITE
ement.

Output lists: An output list has the same form as an input list. The
data items in an output list provide the source of the data transferred
in a WRITE statement. They must all be defined when the WRITE occurs.
An output list may be empty, in which case a null record is written.

Output lists may contain implied DO loops and array names without
indexes, which act as they do in input lists. They may also contain
expressions. Any CHARACTER expression in an output list must be
fixed-length. When the WRITE statement executes, each expression is
evaluated and the result written to the file. An expression might
consist only of a constant, in which case the constant is written. A
format descriptor for an expression must be appropriate to the data
type of its final value. (See Chapter 7 for a discussion of format
descriptors.) If an output list expression contains function
references, invocation of the functions must not change any other value
in the expression, either directly or indirectly.

Length Mismatch: When a fixed-length record is written, the output
list need not always have the same byte-length as the record. When an
attempt is made to write a record too short to hold all the output list

Fourth Edition

EORTRAN 77 Reference Guide

items, an error will occur. When a record longer than necessary to
hold the output list is written, the extra positions will be padded
with blanks if the WRITE is formatted, or with binary zeroes if the
WRITE is unformatted. Padding of extra positions in unformatted DAM
file records is an F77 extension; FORTRAN 77 leaves such positions
undefined.

Carriage Control: The first character of each record in a file to be
printed controls vertical spacing, and is not printed. The remaining
characters in a record are printed starting at the left-hand margin.
The significance of the permissible carriage-control characters is:

Character Vert ical icing Before Printinc
Blank
0 (zero)
1
+

One line
Two lines
To first line of next page
No advance (overprint of last line)

Records that contain no characters, generated by slash editing in a
FORMAT statement or by an empty output list, cause a blank line to be
printed. See Chapter 7 for a discussion on the FORMAT statement.

Unrepresentable Values: If a numeric item cannot be printed in the
form required by a format code, the output field will be filled with
asterisks.

Fourth Edition

INPUT/OUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

PRINT Statement

PRINT format [,output list]

PRINT is a simplified WRITE. It prints the output list at the user
terminal according to the format given in format. A PRINT statement
will not output a namelist block. The format is as described for READ
and WRITE. It is equivalent to:

WRITE (1,format) [output-list]

For error handling a PRINT acts as a WRITE in which no options were
given.

Fourth Edition

FORTRAN 77 Reference Guide

LIST-DIRECTED I/O

Also known as free-format I/O, list-directed I/O occurs when an
asterisk appears as the format in a READ, WRITE, or PRINT statement.

When list-directed output occurs, the values in the output list are
converted to printable form as directed by EORTRAN-suppiLied format list
defaults. The values are then written to the designated file.
List-directed input is usually employed when data is being read by a
program from a free-format device such as the user terminal. A data
item for list-directed input must have the same form as a constant of
its data type. FORTRAN 77 supplies default format descriptors
appropriate to the types of the data items in the input list, and uses
those descriptors to convert the data as it is read in. List-directed
I/O cannot be used in accessing internal files or DAM files.
This feature also provides a method to indicate in the input data that
an item in the input list is to remain unchanged by a READ statement.
This is accomplished by using appropriate delimiters.

Delimiters

Adjacent values in a data line for list-directed input must be
separated by one or more blanks, a comma, or a slash. Consecutive
blanks are equivalent to single blanks. Blanks adjacent to a comma or
slash are of no significance. An end-of-record is treated as a blank.

Two adjacent commas with no intervening characters except blanks will
leave the corresponding item in the input list unchanged. A slash
terminates a read, leaving any remaining items in the input list
unchanged. A list-directed read continues until a slash is encountered
or all the items in the input list have been satisfied. If there are
not enough values to complete the read, an error will occur unless the
data is being read from the terminal, in which case the program will
wait for the remaining values to be typed in.

Repeat Counts

Repeat counts may modify data items under list-directed input. This
format:

represents r_ consecutive occurrences of the input value c. If c is
omitted, j: null values are read in, leaving the next r_ elements of the
input list unchanged. NO blanks may appear between r_, *, and c.

Fourth Edition

INPUT/OUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

Examples:

Source line
Input data:
Result:

Source line
Input data:
Result:

READ(1,*) A,B,C,D
151,,2*2E2
A = 151.
B is unchanged
C = 2.E2
D = 2.E2

READ(1,*) I,J,K
5 -3
1 = 5
J = -3
K is unchanged

INPUT/OUTPUT ERRORS

If an error occurs during execution of a READ or WRITE (including PRINT
statement), execution of the statement terminates and the position of
the file pointer becomes indeterminate.

If an error or endfile condition occurs during a READ statement, the
data items in the input list and any implied DO index variables become
undefined. Data items used solely in subscripts, substring
expressions, and implied DO control values do not become undefined.

If an error occurs during a WRITE statement, any implied DO index
variables become undefined. The contents of the file remain as they
were before execution of the Write began.

If an error occurs during a Read or Write that contains no IOSTAT= or
ERR* option, or if endfile occurs during a READ that contains no
IOSTAT^ or END* option, execution of the program terminates.

NAMEL IST-D

Namelist Input

To read values into a namelist block, give the name of the block in a
READ statement where a format would ordinarily appear.

For example:

Fourth Edition

FORTRAN 77 Reference Guide

When control reaches a namelist READ statement, the program r,
values from the designated EORTRAN unit. If values are to be read f
the terminal, the program waits for them to be typed in.

elist Output

utput the values in a namelist block, give the name of the block
WRITE statement where the format would ordinarily appear. Namelist

ot designed to be used with a PRINT statement.

example:

CTE (1,SHIP)

1 output group will then be printed, giving the values of all
variables in the namelist block. Each value will be labeled with
appropriate variable name. Values of an array are prin
consecutively, separated by commas.

ttput group has the format:

ielist_blocK_name
Mm£§/? K«i&S

.xample, the lines:

IAMELIST /SHIP/ I,K,SPEED
)IMENSION K(3)
)ATA 1/32/, K/1,2,3/, SPEED/40.0/
JRITE (1,SHIP)

d produce the output

3HIP
= 32,

_ — ™ f / - - %

Fourth Edition

INPUT/OUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

ien an uninitialized namelist variable is output, no erro
it the value printed will be meaningleoc?

Values input under namelist must be presented in an in
input group has the same syntax as an output group. However, not a
the variables in a namelist block need be referenced in an input gro
for that block, and the references may appear in any order. When t
input group is complete, as indicated by a $END, program executi
rac i imac

tta value input under namelist has the same form as a constant of
ts data type. When the type of a value does not match that of the

variable to which it is assigned, type conversion occurs as in an
ordinary assignment statement.

For example, the lines:

.1ST /SHIP/ I,K,SPEED
DIMENSION K(3)
WRITE (1,*) 'ENTER DATA:'
READ (1,SHIP)
WRITE (1,*) 'THE DATA IS:1
WRITE (1,SHIP)

result in the following sequence:

DATA:

K(2) = 1,
SPEED ■■= 30r
K(l) = 2,
SaSjCT
THE DATA IS:
$SHIP
1 = 0,
K = 2, lr o,
SPEED := 3.000000EH-01,
SEND

put Group Format: An input group may be given as shown above, given
l a single line, or subdivided into multiple lines as desired. A

token (keyword, name, number, or quoted strinq) must not be bro^"
:ross an end-of-line boun

i between its part;

Fourth Edition

EORTRAN 77 Reference Guide

HIP K(2) = 1, SPEED = 30, K(l) = 2, $END

.SHIP
<(2) =
L, SPEED = 30, K
(1) = 2
r$END

*th equivalent to the input group above, while the group below
1.

HIP
;(2) = 1, SP
:ED = 30,
^(1) = 2,

uttinq Arrays With Namelist

ral methods that make it easier to assign values to an array usi
elist are illustrated below with examples. The examples are outputs
the following program:

PROGRAM NLIST
NAM3LIST /IOTA/ ARR
INTEGER ARR(IO)

\ INITIALIZE THE ARRAY

'00 DO 200 I = 1,10
ARR(I) = 0

>00 OONTINUE

J READ A SET OF VALUES
i

WRITE (1,*) 'ENTER DATA:'
READ (l,IOTA)

; WRITE THE VALUES

WRITE (1,*) 'THE DATA IS:'
WRITE (1,IDTA)

Fourth Edition

INPUT/OUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

GO TD 100
STOP
END

Omitted Values: Consecutive commas in an assignment to an array cau
th* corresponding array elements to be skipped over.

DATA:

DATA IS:

= 1,0,0,0,3,0,0,0,5,0,

Ellipses of Indexes: When a contiguous subset of an array is to
assigned values, the subset may be indicated by giving its bounds
separated by an ellipsis.

R DATA:
1UTA

ARR 2...6) = 1,3,5,7,9,

THE DATA IS:
$IOTA
ARR = 0,1,3,5,7,9,0,0,0,0,
$END

Repetition of Values: When consecutive elements of an array are to have
the same value, the value may be given once with a repeat count:

ENTER DATA:
$IOTA
ARR = 5*1, 4*2,
SEND
THE EATA IS:
$IOTA
m§ s=

Fourth Edition

EORTRAN 77 Reference Guide

: Promotion to an Array: When all the elements of an array are to
assigned the same value, the value may be given as a scalar.

DATA:
>IOTA

DATA IS:

= 5,5,5,5,5,5,5,5,5,5,

calar promotion to a contiguous subset of an array is also possib

R DATA:
IOTA

(2...6 = 5,

EATA IS:

= 0,5,5,5,5,5,0,0,0,0,

rrors When Using Namelist

f an error occurs during namelist I/O, and no ERR= has been suppl
n the READ or WRITE statement, the program will:

. Print the offending line

'.. Print a caret under the offending token

I. Print an error message

. Exit to IRIiyDS

striction on Namelist

list cannot be used to access an array whose bounds are dynamica
ared. That is,

SUBROUTINE BARB (A,N)
DIMENSION A(N)
NAMELIST /FOB/ A

ill cause an error at compile ti.

Fourth Edition

EORTRAN 77 Reference Guide

Table 6-4
Input/Output Statement Syntax

BACKSPACE

CLOSE

ENDFILE

INQUIRE

OPEN

PRINT

READ direct ANSI:

READ direct IBM:

BACKSPACE ([UNIT*]unit# [,IDSrAT>=ios] [,ERR= label])

CLOSE ([UNIT*]unit# [,STATUS= stat] [,ERR= label]
[,IDSTAT>= ios])

ENDFILE ([UNIT*]unit# [,IOSTAT>= ios] [,ERR= label])

INQUIRE ([FILE*]filename or [UNIT*]unit# [,ERR= s]
[,EXIST* ex] [,OPENED* od] [,NUMBER= num]
[,NAMED* nmd] [,NAflE= fn] [,ACCESS* ace]
[,SEQUENTIAL*^ seq] [,DIRECT= dir] [,EORM= fm]
[,FORMATTED* fmt] [,UNFORMATTED* unf] [,RECL= rel]
[,NEXTREC= nr] [,BLANK= blnk] [,IOSTAT= ios])

id ([Unit=]unit#,block

ITE ([UNIT>=] unit#,blockname;

OPEN ([UNIT*]unit# [,ETLE= filename] [,STATUS=stat]
[,ACCESS* ace] [,EORM* fm] [,RECL= reclength]
[,BLANK= blnk] [,ERR= label] [,IOSTAT= ios]
[,ACTIDN= act]

PRINT format [,output list]

READ ([UNIT*]unit# ^[ETC^]format] ,REC= record*
[,END=label] [,ERR=label] [,IOSTAT=ios]) [input list])

READ (unit*'record* [,[FMT=]format] [,END= label]
[,ERR= label] [,IOSTAT= ios]) [input list])

READ Sequential: READ format [,input list]

REWIND

WRITE direct ANSI

WRITE direct IBM:

WRITE Sequential

READ ([UNIT*]unit# [,[FWT=]format] [,END= label]
[,ERR= label] [,IOSTAT= ios]) [input list])

REWIND ([UNIT*]unit# [,IOSTAT> ios] [,ERR* label])

WRITE ([UNIT=]unit# [,[FMI>]format] ,REO record*
[,ERR= label] [,IOSTAT= ios]) [output list])

WRITE (unit*'record* [,[EWT=]format] [,ERR= label]
[,IDSTAT>= ios]) [output list])

WRITE ([UNIT*]unit* [,[FMT=]format] [,ERR= label]
[,IOSTAT= ios]) [output list])

Fourth Edition

Format Statements

The FORMAT statement is used to direct the input and output of data
being read or written in your program via READ, WRITE, or PRINT
statements. This chapter discusses using the FORMAT statement to
describe how data is to be organized coming from or going to a file.
Included in this discussion are:

• Format and I/O list interaction

• Format list rescanning

• Field descriptors

• Edit-control descriptors

For information on Input/Output, see Chapter 6, I/O STATEMENTS.

FORMAT STATEMENT

Formatted data transfer occurs when a format is given in a READ, WRITE
or PRINT data transfer statement. Most often, the format is the
statement number of a FORMAT statement. The other possibilities are
discussed under the READ Statement in Chapter 6.

In the following discussion, the term "I/O list" means either an input
list or an output list.

Fourth Edition

FORTRAN 77 Reference Guide

A FORMAT statement has the following format:

label EORMAT (d [,d]...)

where:

label is the mandatory statement label.

d is a field descriptor or an edit-control descriptor.

The parenthetical list of descriptors is known as a format list.
Blanks are of no significance in a format list. Parentheses may appear
inside a format list to delineate group repeat counts.

Field Descriptors control the data conversion process during data
transfer. For each item in the I/O list, an appropriate field
descriptor must be given. Data moving to or from the data item is
converted as specified by the corresponding descriptor. A field
descriptor in a EORMAT statement cannot specify a width that is greater
than 255.

Edit-control Descriptors control more general aspects of the formatting
process, such as scale factors, tab control, and the optional printing
of literal character items to label the output.

Repeat Counts are integer constants prefixed to a field descriptor,^ or
to a parenthetical port ion or the entirety of a format l ist.
Individual edit-control descriptors cannot have repeat counts. As data
transfer proceeds, the format list items modified by the repeat count
will be reused the number of times specified before format control
proceeds to subsequent format list items. Repeat counts have a maximum
nesting of 10 levels.

FORMAT AND I/O LIST INTERACTION

During data transfer, the format list is scanned from left to right,
except as modified by repeat counts. The I/O list is also scanned from
left to right.

When an edit-control descriptor is encountered in a format list, the
action or alteration required by it is performed. When a field
descr iptor is encountered, the next I /O l is t i tem is edi ted
appropriately and transmitted. If no I/O list items remain when an
edit-control descriptor is encountered, data transfer terminates.

When the colon edit-control descriptor is encountered, data transfer
terminates if no I/O list items remain to be transmitted; otherwise
data transfer continues.

An empty format list may be given to correspond to an empty I/O list.

Fourth Edition

FORMAT STATEMENTS

EORMAT LIST RESCANNING

If the format list is exhausted before the I/O list, the file pointer
is positioned at the beginning of the next record; format control then
reverts to the beginning of the portion of the format list that was
terminated by the last preceding right parenthesis. If there is no
such parenthesis, format control reverts to the beginning of the format
list. Any repeat count preceding the rescanned format is reused. On
output, the current record is padded with blanks and a new record
started. On input, the remainder of the current record is skipped, and
the file pointer advanced to the beginning of the next record.
Reversion of format control, of itself, has no effect on the scale
factor, the sign control (S, SP, SS), or the blank control (BN, BZ) in
effect at the time of reversion.

FIELD DESCRIPTORS

A field descriptor mediates the conversion of a data item between
internal and external form. Usually, the data is supplied by the I/O
list. In a character constant field descriptor, it is contained in the
descriptor itself.

Numeric Descriptors

The numeric descriptors are I, F, E, D, Q, and G. Unless specified
otherwise or modified by edit-control descriptors, the following rules
apply to all numeric descriptors:

negative number, but a positive number is left unsigned.

For input with F, E, D, Q, and G descriptors, a decimal point in
the input field overrides the d specification in the descriptor.

J? *5? field width is insufficient to represent the number, thenthe field width specified is filled with asterisks.

Excess digits of precision may be specified on input to
non-INTEGER numeric data types. The excess will be ignored.

See theBLANK= option of the OPEN statement for the rules
concerning blanks in input fields.

The numeric descriptors are described in the following sections.

Fourth Edition

EORTRAN 77 Reference Guide

Integer Editing (I): Used to edit a short or long integer. The I
numeric descriptor has the following format:

lw[.m]

where:

w is the size of the external field, including blanks and a
sign.

m is the minimum number of places to be displayed on output.
Leading 0's will be printed if necessary to fill the field.
For input, m has no effect.

Real Editing (Nonexponential (F)): Writes a real number without an

edit descriptor has the following format:

Fw.d

where:

w is the size of the field, including blanks, the sign, and the
decimal point.

d is the number of places to the right of the decimal point.

The following rules apply to the F edit descriptor:

On input: The decimal point may be omitted from the field.
The rightmost d digits will be interpreted as
decimal digits. If a decimal point is present, its
position overrides d. Input fields appropriate for
E and D editing will also work for F editing.

On output: d decimal positions are always written.

Fourth Edition

EORMAT STATEMENTS

Real Editin
number with an exponent,

(E)): Edits a real or double precision
The E descriptor has the following format:

Ew.d[Ee]

where:

w is the size of the external field, including an exponent and
its sign.

d is the number of decimal places. On input, an explicit
decimal point overrides d.

e is the number of exponent digits to be displayed on output.
It is ignored for input. When Ee is omitted from an E field
descriptor used for output, the defaults listed below under
output will apply.

The following rules apply to the E descriptor:

On input: The exponent may be omitted. E+00 will be assumed.

On output: If Ee is present, e digits of the exponent will be
printed. If Ee is omitted, the appearance of the
exponent will be as follows:

Value of
Exponent

Appearance of
Exponent

-99 < exp < 99

-999 < exp<-99

99<exp _< 999

-9999 < exp<-999

999 < exp < 9999

E + zz

-zzz (no "E")

+zzz (no "E")

Note that the number is always normalized. For output that is
not normalized scalars should be used.

Fourth Edition

EORTRAN 77 Reference Guide

Double Precision Editing (D): Edits a double precision number,
seriptor has the following format:

The D

Dw.d

The following rules apply to the D descriptor:

On input: Operates exactly like an E descriptor.

On output: Operates exactly like an E descriptor with no Ee
present, except that a D is substituted wherever an
E would appear in the output field. For explicit
control of double precision exponent format, output
the number with an Ew.dEe descriptor.

*16 Editing (Q): Used to edit a REAL*16
le following format:

AL*16 editing is th

Complex Editing: A complex number consists of a pair of real or
double precision numbers. It is edited with an appropriate pair of
real or double precision field descriptors. The fact that the two
numbers form one entity mathematically is irrelevant to input/output.
Edit-control descriptors may appear between the two field descriptors.

General Editing (G): Edits real data where the magnitude of the data
is not known beforehand. The G descriptor has the following format:

Gw.d[Ee]

where:

w, d, and e are as defined for the F descriptor.

General editing produces the more readable F format when possible, but
converts to E format when the magnitude of the number exceeds F format
representational limits.

Fourth Edition

FORMAT STATEMENTS

The following rules apply to the G descriptor:

On input: The G descriptor is equivalent to the F descriptor

On output: The G descriptor acts as follows:

Magnitude (M) of Real
Data Item

0.1 <= M < 1

1 <= M < 10

10 <= M < 100

G Descriptor
Acts As

F(w-n).d, n(*b*)

F(w-n).(d- l) , n('b ')

F(w-n).(d-2), n('b')

10**(d-2) <= M < 10**(d-l) F(w-n).l, n('b')

10**(d-1) <= M < 10**(d)

Otherwise

F(w-n).0, n('b')

Ew.d[Ee]

where b is a blank and n is 4 for Gw.d and e+2 for
Gw.dEe.

If M < .01 or M >= 10**d, then Gw.d is equivalent
to kPEw.d, where k is the current scale factor.

For input, the Gw.dEe field descriptor is treated
identically to the Gw.d descriptor. For output,
the Gw.dEe acts as FW.dEe if 0.1 <= M < 10**d, and
acts as Ew.dEe otherwise.

Fourth Edition

EORTRAN 77 Reference Guide

Nonnumeric Descriptors

L, A, X, B, and format-list character constants are nonnumeric
descriptors, that is, they are not number oriented edit descriptors.

to or from an i/o list entity. The L descriptor has the following
format:

where:

w is the width of the field.

The following rules apply to the L descriptor:

On input: A valid input field consists of optional blanks,
optionally followed by a decimal point, followed by
a T or an F. The T or F may be followed by
additional characters in the field, but they will
be ignored.

On output: The output field consists of w-1 blanks followed by
a T or F, as the value of the internal datum is
true or false, respectively.

Character Editing (A): Used for transferring character or Hollerith
values. The A descriptor has the following format:

where:

w is the width of the field, and must not be greater than 255
characters when appearing in a EORMAT statement. It is
required when inputting or outputting Hollerith data, and
optional when inputting or outputting data from a variable of
type CHARACTER.

Fourth Edition

FORMAT STATEMENTS

In the following general rules that apply to the A descriptor, L is the
length of the character item being edited.

On input:

On output

If w >= L, the rightmost L characters are taken
from the external input field. If w < L, the w
characters are left justified in the data item ancl
padded with blanks.

If w > L, the characters are printed right
justified in the field, preceded by blanks as
needed. If w <= L, the leftmost w characters are
printed. If w is not specified it is assumed to be
equal to L.

Character Constant Editing: Used for transmitting character and
Hollerith constant data. The apostrophe edit descriptor and the

oilerith edit descriptor have the following format:

C»V*C*» « * {-s nHccc... c

where:

Each c is any character in Prime ECS (not necessarily a member
of the F77 character set).

n is the number of characters in the character constant.

Character strings in either of these formats may appear as constants in
an output format l ist. Such a string contains its own data,
eliminating the need for a corresponding item in the output data list.
When the string is encountered during the scan of the format list, the
characters it contains are written to the current record. A character
constant may not appear in a format list used for input, and may not be
modified by an individual repeat count.

Note

FORTRAN 66 permitted data to be read into an H format field,
altering the value it would print when the format list involved
was later used for output. FORTRAN 77 will not accept this
prac t ice .

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

aace Skipping (X): Used for skipping one or more character positions.
le X descriptor has the following format:

where:

n is an integer. On output, equivalent to a character constant
of n blanks. On input, equivalent to the positional edit
descriptor, TRn, which is explained later in this chapter. NO
repeat count may appear.

Business Editing (B): The B descriptor is used in printing business

unauthorized modifications, as on checks, suppress leading 0's and plus
signs, print trailing minus signs (accounting convention), and convert
minus signs to CR for indicating credit entries on bills. Business
editing is an F77 extension.

B 'string'

where:

The length of string determines the field width. If the width
is too small for the number, then the output will be a string
of aster isks fil l ing the field. Val id characters for the
string are:

- $

The use of the valid characters is explained below.

Plus (+):

If only the first character is +, then the sign of the number (+
or -) is printed in the leftmost portion of the field (Fixed
sign). If the string begins with more than one + sign, then
these will be replaced by asterisks and the sign of the number
(+ or -) will be printed in the field position immediately to
the left of the first printing character of the number (Floating
sign). If the rightmost character of the string is +, then the
sign of the number (+ or -j will be printed in that field
position following the number (Trailing sign).

Minus (-):

The minus sign behaves the same as a plus sign except that
s p a c e (b l a n k) i s p r i n t e d i : " ' r " " «
positive (Plus sign suppressi

Fourth Edition, Update 2

FORMAT STATEMENTS

Dollar sign ($)

dollar sign $ may at most be prece<
optional fixed sign. A single dollar sign will cause a $ to be
printed in the corresponding position in the output field (Fixed
d o l l a r) .

Multiple dollar signs will be replaced by printing characters in
the number, and a single $ will be printed in the position
immediately to the left of the leftmost printing character of
the number (Floating dollar).

Asterisk (*):

Asterisks may be preceded only by an optional fixed sign an_
a fixed dollar. Asterisks in positions used by digits of "...
number will be replaced by those digits. The remainder will
printed as asterisks (Field filling).

Zed (Z):

If the digit corresponding to a Z in the output number is a
leading 0, a space (blank) will be printed in that position;
otherwise the digit in the number will be printed (Leading-0
suppression).
Number sign (*):

' s i nd i ca te d i g i t pos i t i ons no t sub jec t t o l ead ing -0
suppression; the digit in the number will be printed in its
corresponding portion whether 0 or not (zero nonsuppression).

Decimal point (.):

A decimal point indicates the position of the decimal point in
the output number. Only #'s and either trailing signs or credit
(CR) may follow the decimal point.

Comma (,):

Commas may be placed after any leading character, but before the
decimal points. If a significant character of the number (not a
sign or dollar) precedes the comma, a comma will be printed in
that position. If not preceded by a significant character, a
space will be printed in this position unless the comma is in an
asterisk field. In that case an * will be printed in that
pos i t i on .

Credit (CR):

The characters CR may only be used as the last two (rightmost)
of the string. If the number is positive, two spaces will be
printed following it. If negative, the letters CR will be

Fourth Edition

EORTRAN 77 Reference Guide

- -■ • •!»****** a* |S|^1jj|^l@j) (oil]^i?[c}'rii{K^'-i '.Ci^i^sr^.,

teble 7-1
Examples of B-Format Usage

Number
i

Format Output Field

123 B'####* 0123
12345 B'####' * * * *
0 B'####» 0000
123 B'ZZZZ* 123
1234 B'ZZZZ' 1234
0 B'ZZZZ'
0 B'ZZZ**
1.035 B*#.##* 1.04
0 B'*.##' 0.00
1234.56 B'ZZZ,ZZZ,ZZ#.##' 1,234.56

£ 123456.78 B'ZZZ,ZZZ,ZZ#.##* 123,456.78 1 1
0
2

B'ZZZ,ZZZ,ZZ#.##*
B*+###»

0.00
+002

-2
2
-2

B'+###*
B*-ZZ#*
B'-ZZ#'

-002

234 B*ZZZZZ+' 234+
-234 B'ZZZZZ+' 234-

\ 234
-234
12345
-12345
123
-123
98
98

B'ZZZZZ-'
B'ZZZZZ-'
B'ZZZ,ZZ*CR'
B*ZZZ.ZZ*CR'
B'+++,++#,##*
&r++,++*.#*'
B'$ZZZZZZ#'
B'$$$$$$$*'

12'345CR

156789 B'$***,***,**#.##' $****156,789.00

BDIHSi^OiBHHBHHHHIiH l l l W l l M l i H M l ■ I l l — —

EDIT-CDNTRCL DESCRIPTORS

Edit-control descriptors control general aspects of the formatting
process. They differ from field descriptors in that they do not
correspond to or supply individual data items, but modify the
environment in which the data transfer process occurs.

Fourth Edition

FORMAT STATEMENTS

Scale Factors (

The use of a scale factor allows you to move the location of the
decimal point in real numbers. The P descriptor has the following
format:

scale factor J<, is an unsigned or negative integer constant.
The comma following a scale factor is often omitted, so that it
becomes a prefix of a subsequent field descriptor. The scale
factor has various effects, depending on the descriptor type
and the direction of data transfer.

The following rules apply to the P descriptor:

On F, E, D, Q, and G input: If there is an exponent in the field, the
scale factor has no effect. Otherwise, it converts the data so that:

External Value = Internal Value*(10**k)

The scale factor converts the value as for F input.

On E, D, and Q output: The mantissa is multiplied by 10**k and the
exponent is reduced by k to maintain the same overall value. This
permits output of E, D, and Q numbers in non-normalized form.

G Output: If the G is acting as an F, the scale factor is ignored. If
it is acting as an E, the scale factor behaves as described for E
output.

Note

Once a scale factor has been used, it remains in effect for all
subsequent descriptors of appropriate type, until it is resetto another value or to 0. When a format list is rescanned, the
scale factor is not reset to 0 automatically. If a scale
factor is to affect only one field, "OP" must appear before the
next scalable descriptor that occurs.

Fourth Edition

FORTRAN 77 Reference Guide

Control Editing (SP,SSrS)

The SP, SS, and S descriptors control the placement of plus signs in
numeric output. Once a sign control descriptor is encountered, it
remains in effect until it is explicitly altered or revoked. These
descriptors have the following format:

Each effect of each descriptor is explained below.

SP: The processor will insert a plus sign wherever one may
optionally appear.

SS: The processor will not insert any plus sign whose
appearance is optional.

S: The processor will return to the locally defined system
default for sign editing.

Blank Control Editing (BN,BZ)

The BN and BZ edit descriptors can be used to specify the
interpretation of blanks, other than leading blanks, in numeric input
fields. The method of handling blanks in numeric input fields that is
established for a file by the BLANK= option of the OIEN statement may
be temporarily overridden by BN or BZ. The method may be altered as
often as desired, and will revert to the BLANK= value when the READ
statement is complete. Blank control descriptors have no effect on
output. The BN and BZ descriptors have the following format:

B N B Z

The effects of the blank control descriptors are explained below.

BN: All blanks will be deleted, and digits will be compressed
to the right side of the input field. An all-blank field
is interpreted as a 0 value.

BZ: All but leading blanks will be converted to zeros, as in
EORTRAN 66.

Fourth Edition

FORMAT STATEMENTS

Positional Editing (T)

The T edit-control descriptors are used to set tab positions in the
current file record. They have the following format:

Tn TLn TRn

where:

n is an integer constant less than or equal to 255.

The following description presupposes that you have read about the I/O
buffer F$IOBF at the beginning of the subsection on DATA TRANSFER
STATEMENTS in Chapter 6. The pointer that scans F$IOBF during data
transfer ordinarily behaves as follows:

1. Before data transfer, it points to the first position (byte) of
F$IOBF.

2. While an F$IOBF position is being read or written, it points to
that position.

3. After a position has been read or written, it moves to the next
position to the left and remains there.

4. After the last F$IOBF position has been read or written, it
remains at that position.

Note that this behavior is the same as that of the carriage position on
an ordinary typewriter.

The T edit-control descriptor is used to alter the sequential progress
of the F$IOBF pointer. The pointer can be moved to the left or right
of its current position, or to an absolute position, in any desired
sequence. Subsequent data transfers will begin at the new position.
Thus F$IOBF positions, and hence the corresponding current-record
positions, can be accessed as often as desired and in any order.

If an attempt is made to move the F$IOBF pointer beyond the first (or
last) F$IOBF position, the pointer will stop and remain at that
position. If T descriptors are used during a WRITE in such a way that
some F$IOBF positions remain undefined after all data items have been
transferred, the undefined positions will be filled with blanks before
F$IOBF is written to the current file record.

Moving the F$IOBF pointer has no effect on the file pointer, which
never skips positions within a record. Beware of confusing these two
pointers.

Fourth Edition

EORTRAN 77 Reference Guide

The effect of using the positional descriptors is explained below.

TLn: Move the F$IOBF pointer n positions left.

TRn: Move the F$IOBF pointer n positions right.

Tn: Move the F$IOBF pointer to the nth character of the record.

Conditional Output

A colon (:) in the format list causes data transfer to end at that
point if no items remain in the output list. This feature increases
the versatility of a format list that contains character constant
descriptors used in labeling the output. A colon is ignored on input.

Record Skipping

The slash (/) in a FORMAT statement indicates the end of data transfer
on the current record. Format of the slash edit descriptor:

/ [/] . . .

A slash in a format list causes I/O processing to go to the next
record. As many new records will be begun as there are slashes. The
effect of slashes at the beginning or end of a format list is
additional to the automatic beginning of a new record with each data
transfer statement.

The following general rules apply to the slash edit descriptor:

On input: Under sequential access, a slash causes the
remaining portion of the current record to be
skipped. The file pointer is positioned at the
beginning of the next record, making it the current
record. Under direct access, the remainder of the
record is skipped, the record number increased by
one, and the file pointer positioned at the
beginning of the record that has that record
number.

On output: Use of the slash is similar to input, except that
all positions skipped over will be filled with
blanks.

Commas adjacent to slashes may be omitted.

Fourth Edition

Subroutines and
Functions

This chapter discusses how to create and use your own functions and
subroutines, as well as those supplied by the F77 compiler. In
addition to one main program, a EORTRAN 77 program may contain any
number of functions and subroutines, collectively called subprograms.
There are five categories of subprograms in EORTRAN 77:

1. Intrinsic functions

2. Statement functions

3. External functions

4. Subroutines

5. Block data

F77 INTRINSIC FUNCTIONS

EORTRAN 77 supplies you with a library of a wide variety of intrinsic
(built-in) functions. You can use these functions for type conversion,
character data evaluation, lexical comparison, and the calculation of
various mathematical quantities.

Fourth Edition

EORTRAN 77 Reference Guide

The F77 intrinsic function set includes:

• All FORTRAN 77 intrinsics

• Additional functions for bitwise logical operations

• Bitwise shifts
• Truncation of an integer

• Determination of a data item's storage address

Operations on the data types

Intrinsic Function Tables

Tables 8-1 through 8-7 provide a complete list all F77 intrinsic
functions by category:

Table Intrinsic Function

8 - 1

8 - 2

Logarithmic and Exponential

Trigonometric
8 - 3 Hyperbolic
8 - 4 Mathematical

8 - 5

8 - 6

Conversion and Maximum/Minimum

Character Manipulation

8 - 7 Bit Manipulation

Where a specific F77 function has the same name as an existing FTN
function, the functions are the same, except as noted under
Reimplemented ETO Constructs in Appendix C.
Before using any function with which you are not completely familiar,
be sure to study carefully the table entry and accompanying notes, if
any, for that function. Notes for Tables 1-7 immediately follow those
tables.

Since all F77 intrinsic functions are built into the language, you can
invoke an F77 intrinsic function at any point in any F77 program unit.
The F77 compiler and the BIND linking loader will automatically supply
the functions you invoke. No additional action is required.

Fourth Edition

SUBROUTINES AND FUNCTIONS

Referencing an Intrinsic Function

To invoke an intrinsic function, you use the function name followed by
the arguments on which you want it to act within an expression. After
the invoked function completes its calculations, the function name is
replaced by the value from the calculation.

For example, in the assignment statement

X = SQRT(A + B)

SQRT is the instrinsic function name. The purpose of this function is
to determine the square root of the value of the expression A + B.

For information on declaring certain intrinsic functions INTRINSIC in a
program unit, see Chapter 3.

Generic and Specific Functions

Many FORTRAN 77 intrinsic functions are generic. They exist in several
versions, called specific functions, which differ only in the data type
of the argument each accepts. Both generic and specific functions are
listed in Tables 8-1 through 8-7. When you reference a generic
function, the F77 compiler will examine the argument list at the
reference and select the specific function appropriate to the data type
of the arguments.

All arguments for either generic or specific functions must be of the
appropriate data type. If not, the compiler will signal an error.

Not all specific functions are individually named. Those that are may
be invoked directly by name, in which case you must be careful to
supply the correct data types.

Intrinsic Functions as Ar<

Only named specific functions can be passed as arguments to
subprograms. In some cases, a specific function has the same name as
its generic function. When this name appears in an argument list, it
is the specific function that is passed.

The following intrinsic functions cannot be passed as arguments:

• Type conversion

• Selection of a maximum or minimum value

Lexical comparison

Fourth Edition

EORTRAN 77 Reference Guide

Logical operation

For more information on passing arguments with intrinsic functions, see
the Subprograms as Arguments section later in this chapter.

Long and Short Integer Arguments to Intrinsic Functions

All new programs you write in F77 should use long integers exclusively,
in conformance with the ANSI standard. The use of short integers in an
F77 program unit may become necessary when:

• You convert program units from EORTRAN IV to F77, or,

• You write F77 program units which will return values to an
existing FORTRAN IV program unit.

No constraint on the use of short integers is imposed by the F77
intrinsic set. All F77 intrinsic functions have been extended to
accept either long or short arguments, or a mixture of the two, and to
produce short integer results where appropriate. ANSI FORTRAN 77 does
not provide short integers or permit data types to be mixed in an
intrinsic function's argument list.

An intrinsic function that produces an integer result (an integer
intrinsic) will produce either a long or short integer. For integer
intrinsics other than IOT whose arguments are integers, the result type
depends on the argument list at the particular invocation. For integer
intrinsics whose arguments are not integers, and for DW, the result
type depends on the compiler option (-IMS or -INTL) in effect when the
program unit containing the intrinsic was compiled. The notes for the
tables on intrinsic functions tell how the result type for each integer
intrinsic is determined.

Fourth Edition

SUBROUTINES AND EUNCTIDNS

Fourth Edition

FORTRAN 77 Reference Guide

I
0) 0) 0) 0) 0) 0)

CN CN CN <N CN 04* * * * * *
M J-l U M M k-l
£U QJ Q) 5 0) 3u1 oi oi U o> Oi0) 0) tt> 0) 0) 0)

*& ""^ *EJ* "^* * * *
U k-l u u k-ltt) gj si ttl tt)
D1 Cn C° D1 Cn<u <u a> a> <u tt)
SSS

0) rH tt) tt)rH * rd rrl

.Hi

li! li

g?!

Fourth Edition

SUBROUTINES AND FUNCTIONS

1 ~l « r « l T * •*a S i ' 1 s p 1 1 CO c o c n CO
4 -i E t f H i ro ' ^ ? i 1
C> ■ 1 G 2 2 CN

52

c

i n

EEHSEE1
ro r o c o CO

i y CJ VO VD VD VO VO VO x x x x x X X X X X X
tt) tt) tt> 0) 0) tt>

k-< 'VS,! ■*■ ■Z^^BH'""B k-l
O - (U fl) tt> tt> 0) tt) o j t t > r H ■f l H f lE I ' v^ ' 1 r i4.) * * * * * * rH r-i rH rH rH rH rH rH rH rH rH C T > r H C P C n r - i • * Cn
fl) C) r-i rH rH r-i r-i rH CU CU CU CU CU CU CU CU CU CU CU CU tt) rH .Q r H r H t t) 1 1 J H X 1 H rH tt)
Qi C ra ra ra ra ra ra rflM^V^fli^f i — [z ^ H B B B B B B 4-> ra 3 ra pl]l KfJ-i II 1 & -y
> i P !0 f.tj fill fill fill fill 1 O O O O Uj) ^cy. loj jo) io) {ay 1 M~m< >■•] i<>n (D C
67S k tetete tete ao o CJ LaAAJ ^! 'y'' M a Q te h

H^^fl V ' o . H

wo «> i - ;h '# i ivsj 1M-i C
5? vou \D X X V-le 1 &> tt) rH tt) tt) si. OJ r H tt) QJ & ^ r H tt H °i ? ?r\cr

CD
1 •-> * "rf «d
rH .Q r-i CU CU

& » 1
tt) rH .

H
Q r H CU ifiv,—:i '.7oj ,^i jo>ifoi),l

fS) f!)] r5) ny) (oi lo>'Hi i'i* fs'i i«5i ''-''''!?'

C n r H
tt) rH .Q4-) ra 3c .S SH « fi

r H
& i C n i H *
t t) r H t t > r H £ 3 r H

Cn
tt) rH

p^ ^ 4-) ra 3 ra ■ ̂■■̂flB 4-> ra 3c & £
r-i te Q

4 -) r a 4 -) r a 3 (q 4-) raM s ls l 88 c aj c aj o ■ 4 < «

t
u
• H _, JO) ri ri ri P . c i i d cz! H
U tt) &4 C-l X H O Z Z S i Z rH
fl l c H ^ S i ^ ^ M 1 bd tfj Cj ^ 1 2 X S3 R R R8, J

1 1 1 !l ! ij •] ii n ri it' i l l 11
1 m 1

k-i
f S j 1m vyc 1

O 2 1 S

iy w
O 4-) CN

8 CN CN
c

k-i cj

-y a. p . •■ d

r - i p i i II

C

""

Koj - i y90
• H t f tt) 4 J H 31 alr H
4->
• H

U r- i
■h ra

o CU•H g O X
•H 0) ■~*i d lc

• H
I W
1>

f ' l i } (" J l i
k-l O U rH

r t l M i 5.1
X
23

3 }
3 o

r5 r-^

Q g 4->

1 iw C cn ?p-yo o
• H

xn 4Jw o

C 4J
•ri W

c w
•H tt)
W rH QJ
O rH 3

ra c O k-l rHx: ra raa J >
O (fl r-ja l l

Fourth Edition

FORTRAN 77 Reference Guide

TOtt)! C N
C N
C O

C N
ro

"3
CO CO r o

"31
CO

i 1 C O

i r - r- r o
r H r H

LD
CN

LT)
CN

i n
C N

i n
CN

c
1+4 C
O -r-

1 k - i
1 S i

k-i
0)

t.ra
k-l

cn
k-l

8,
r Hs r H

8 El r Hs
.—4<y cj1 fl)i I

1 H

V-4 QJ

H

QJiM "cn

3
Cna

- r lcn
3

1̂
k-4> t t >i ts

1 L l

k-i

cn

k-itt)

ra
1 1

k-I
0)ura

k-i
QJ8ra

k-i
OJ

fira
L_j

k- i
0)

ra

v-i
tt>
t,ra

SeJ M UJ h-t

i? <c! 5
U•H
m
•H
O tt

o

! 1 Eh

■rH
k-i
0) fl

o 1i
. 1

O 4-
cSI

1E
: r H
n

r H r H CN CN CN CN CN

C

1

k-l

k-l
CD
4-J

CNlrHl<h ralral0 -, «,o
•H
4J

•a•H

k-i fl)
tt) cn

ra c
k-i M

H k

OJ t

-1s
J

iy wO tt)

* * *
Oi M

cn cn
c c c
O "H »H

•H S-4 M
4-) 4J 4J
ra W W

C N l
ra|
11

A

CNl
nil

A

91
II
V

C N l
ra|
V

1 *w
D 4J

k-i

M 4-) 1-4 CO -H

Cn
U 1 C*

t i | t i | til til

rH1°5
cn Iw tra c

* t t)
4-) M
k-4 ft)

4-1 ft-<
O -H
x £

r Hs
Sa

r Hs
•5!
S a

r Hs
aj
1-4 V

rHsi o) r a

1 % s * * y

tt) cn

i l u.» Q £
i O U as

Fourth Edition

SUBROUTINES AND FUNCTIONS

f* & & &

& & c n c n c n c n c n

8 $ 8
B 3 5

w o e

;:$

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Notes for Tables 8-1 through 8-7

In the following notes the names of data types are given in lowercase.
Uppercase is reserved for intrinsic function names.

1 The generic INT discards the fractional part of its argument,
producing a truncated (unrounded) integral value. The result
will be INTEGER*2 in a program unit compiled with -INTS, and
INTEGER*4 in a program unit compiled with -INTL (the default).

2 INTS and INTL are similar to INT, differing only in that the
result type is determined by the function selected rather than

he

For a of type real, REAL (a) is a. For a of type integer or
double precision, REAL (a) is as much precision of a as a real
datum can contain. For a of type COMPLEX, REAL (a) Ts the real
part of a.
For a of type double precision, EBLE(a) is a. For a of type
integer or real, IBLE(a) is the value of a in double precision
form. For a of type COMPLEX, IBLE (a) is the real part of a in
double precision form.

553 Kgi—as
j;,v ty-mSW1 -recisi
*16 form. For a of

Ln REAL*16 fo

CMPLX may have one or two arguments. If there is one
argument, it may be of type integer, real, double precision,
or COMPLEX. If there are two arguments, they must both be of
the same type and may be of type integer, real, or double pre
cision.

For a of type COMPLEX, CMPLX (a) is a. For a of type integer,
real, or double precision, CMPLX (a) is the COMPLEX value whose
real part is REAL (a) and whose imaginary part is zero.

CMPLX(al,a2) is the COMPLEX value whose real part is REAL(al)
and whose imaginary part is REAL (a2).

3c\'i£a;,trp};̂ '' rs i s ru\b;bic n;?.
i*ŷ »r<»iEtv=r<>i

Every ASCII-7 character is represented in the computer as a
sequence of eight bits ranging from 10000000 to 11111111
(octal :200 to :377, Decimal 128 to 255). The Prime Extended
Character Set (Prime ECS) is represented as a sequence of
eight bits ranging from 00000000 to 11111111 (octal :000 to
:0377, Decimal 0 to 255). The ASCII-7 characters are a proper
subset of Prime ECS. Any such sequence can be interpreted
either as a character or as an integer. CHAR and ICHAR
p r o v i d e a m e a n s f o r c o n v e r t i n g b e t w e e n t h e t w o

Fourth Edition, Update 2

SUBROUTINES AND FUNCTIONS

interpretations. On a Prime computer, a value that is out of
the range of the character set is automatically mapped into
the range of the character set as noted under the following
discussion of CHAR. (For Prime ECS characters to be accepted
by the compiler, use the -ECS compiler option. Refer to
Chapter 9.)

ICHAR operates on a single character. For an ASCII-7
character, it returns an integer between 128 and 255; for a
Prime ECS character, it returns an integer between 0 and 255.
These represent the decimal equivalent of the bit pattern
(ASCII-7 or Prime ECS) for that character.

CHAR operates on any integer, and under one of two possible
condi t ions:

1. When the -ECS compiler option is invoked:

If the integer is between 0 and 255, then all
but the eight rightmost bits are truncated.
The integer is used directly.

2. When the -ECS compiler option is not invoked:

If the integer is between 128 and 255, then all
but the eight rightmost bits are truncated. The
integer is used directly.

If the integer is not between 128 and 255, it is
converted as follows:

• Truncate all but the eight rightmost bits (the
lowest-order byte).

• Set the leftmost remaining bit to 1.

If conversion is required, CHAR returns the character whose
bit pattern corresponds to the binary equivalent of its
argument.

The effect of the conversion is that for every integer I

CHAR(I) = CHAR(M0D(I,128) + 128)

The compiler option -ECS is discussed in Chapter 9. This
option deals with the ICHAR and with the CHAR functions. The
complete Prime Extended Character Set is described in Appendix

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

8 ANINT(a) is defined as:

REAL(INTL(a+.5)) if a >= 0
REAL(INTL(a-.5)) if a < 0

DNINT(a) is defined as:

EBLE(INTL(a+.5)) if a >= 0
EBLE(INTL(a-.5)) if a < 0

-JNTL(a+.
REAL*16(INTL(a-.

' NINT(a) and IDNINT(a) are defined as:

INT(a+.5) if a >= 0
INT(a-.5) if a < 0

10 The argument to IABS may be INTEGER*2 or INTEJGER*4. The
result will be of the same type as the argument.

11 MOD yields the remainder when its first argument is divided by
its second argument. Both arguments must be of the same type.
The result will also be of that type.

The four specific functions under MOD are defined:

M0D(al,a2) = al - (INTL(al/a2) * a2) .
AMDD7al,a2) = REAL(al - (INTL(al/a2) *'a2))
EMOD(aT,a2) = EBLE(aT - (INTL(aT/a2) * aZ))
QTC)D(al,a2) = REAL*16(al - (INTL(al/a2) * a2))

The result for MOD, AMDD, EMOD, and QMQD is a "Division by
Zero" error when the value of the second argument is zero.

12 SIGN combines the magnitude of its first argument with the
sign of the second. If the value of the first argument is
zero, the result is zero, which is neither positive nor
negative.

13 The value of the argument of the LEN function need not be
defined at the time the function reference is executed.

14 INDEX(al,a2) returns an integer value indicating the starting
position within the character string al of a substring
identical to string a2. If a2 occurs more than once in al,

Fourth Edition, Update 2

SUBROUTINES AND FUNCTIONS

the starting position of the first occurence is returned.

If a2 does not occur in al, the value zero is returned. Note
that zero is returned if LEN(al) < LEN(a2).

The REAL function for real part extraction is the same
specific function that is selected when the generic function
REAL is given a C0MHLEX*8 argument.

REAL and DREAL for real part extraction could not be passed as
arguments in FORTRAN 77 because they are specific type
conversion functions. To provide symmetry with AIM2G and
DIMK3 imaginary part extraction, which can be passed, F77
allows REAL and DREAL to be passed as arguments.

16 A complex value is expressed as an ordered pair of reals,
(ar,ai), where ar is the real part and ai is the imaginary
pa r t .

17 The value of the argument of SQRT, DSQRT, and QSQRT must be
greater than or equal to zero. The result of CSQRT and CDSQRT
is the principal value with the real part greater than or
equal to zero. When the real part of the result is zero, the
imaginary part is greater than or equal to zero.

18 The value of the argument of ALOG, ELOG, QLOG, ALOG10, DLOG10,
and QLOG10 must be greater than zero. Ihe value of the
argument of CLOG, ELOG, and QLOG must not be (0.,0.). The
result of CLOG, DLOG, and QLOG is the principal value, i.e.
t he range o f t he imag ina ry pa r t o f t he resu l t i s
-pi < imaginary part <= pi. The imaginary part of the result
is pi only when the real part of the argument is less than
zero and the imaginary part of the argument is zero.

19 All angles are expressed in radians.

0 The result will be expressed in radians.

21 The absolute value of the argument of SIN, DSIN, QSIN, COS,
DCOS, QCOS, TAN, DTAN, QTAN is not restricted to a value less
than 2*pi.

22 The absolute value of the argument of ASIN, EftSIN, and QASIN
must be less than or equal to one. The range of the result is
-pi/2 <= result <= pi/2.

23 The absolute value of the argument of ACOS, E&COS, and QAOOS
must be less than or equal to one. The range of the result
is: 0 <= result <= pi.

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

24 The range of the result for ATAN, DATAN, and QATAN is
-pi/2 <= result <= pi/2. If the value of the first argument
of ATAN2, DATAN2, or QATAN2 is positive, the result is
positive. If the value of the first argument is zero, the
result is zero if the second argument is positive and pi if
the second argument is negative. If the value of the first
argument is negative, the result is negative. If the value of
the second argument is zero, the absolute value of the result
is pi/2. The arguments must not both have the value zero.
The range of the result for ATAN2, DATAN2, and QATAN2 is:
-pi < result <= pi.

25 All comparisons are based on one of the following collating
sequences:

• ASCII-7 (American Nat ional Standard Code for
Information Exchange ANSI X3.4-1977).

• Prime ECS, as described in Appendix A of this manual.

If both of the characters being compared are ASCII-7
characters , the ASCI I -7 co l la t ing sequence is used;
otherwise, the Prime ECS collating sequence is used.

IGE(al,a2) returns the value .TRUE, if al=a2, or if al follows
a2 in the appropr iate col lat ing sequence. Otherwise,
IGE(al,a2) returns the value .FALSE.

LGT(al,a2) returns the value .TRUE, if al follows a2 in the
appropriate collating sequence. Otherwise, LGT(al,a2) returns
the value .FALSE.

IiLE(al,a2) returns the value .TRUE, if al = a2, or if al
precedes a2 in the appropriate collating sequence. Otherwise,
LLE (al, a2~T~returns the value .FALSE.

LLT(al,a2) returns the value .TRUE, if al precedes a2 in the
appropriate collating sequence. Otherwise, LLT(al,a2) returns
the value .FALSE.

If the operands for LGE, IGT, LLE, and LLT are of unequal
length, the shorter operand is considered as if it were
extended on the right with blanks to the length of the longer
operand.

The result-type for LGE, IGT, LLE, and LLT will be
in a program unit compiled with -LOGL, and L0GICAL*2 in a
program unit compiled with -LOGS.

26 AND, OR, and XOR perform the bitwise logical function named on
a list of long and short integers. The result will be a long
integer if any argument is long; otherwise it will be a short

Fourth Edition, Update 2

SUBROUTINES AND EUNCTIONS

i short and long integers are mixed, the short integers
will be sign-extended, not zero-extended.

Performs a bitwise logical NOT function (ones complement) on a
long or short integer. The result has the type of the
argument.

LS and RS take two arguments; each argument may be either a
long or a short integer. These arguments are called ARG1 and
ARG2 in the following.

LS shifts ARG1 to the left by the number of bits specified in
ARG2. The result has the type of ARG1 — that is, no
type-change occurs, vacated places are filled with zeros. If
ARG2 is not positive, no shift occurs.

RS is identical to LS, except that the shift is to the right.

SHET is similar to LS and RS, except that it can shift in
either direction, and can perform two shifts rather than one.
The additional shift occurs if a third integer argument, ARG3,
is given.

If ARG2 is negative, the shift is to the left. If it is
positive, the shift is to the right. If it is zero, no shift
occurs.

If ARG3 appears, the shift specified by it will be carried out
after the shift specified by ARG2 is complete. The rules are
the same as for the ARG2 shift.

LT takes two arguments. Each argument may be either a long or
a short integer. These arguments are called ARG1 and ARG2 in
the following.

LT preserves the left ARG2 bits of ARGl, and sets the rest to
zero (left truncation). The result has the type of ARGl that
is, no type change occurs. If ARG2 is <= 0, no bits are

RT is identical to LT,
preserved.

right ARG2 bits are

LOC operates on an item of any data type except CHARACTER and
L0GICAL*1. The result is an INTEJGER*4 value representing the
memory address where the first byte of the data item is
located.

The LOC function returns two halfwords
the address of its argument. The
address is as fol

tes) containing
t for the returned

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

5-16

17-32

Set to zero

Ring number

Data format code. Set to zero, indicating
only two words in this data format

Segment number of argument

Halfword number of ar»

32 An integer result produced by this function will be INTBGER*2
in a program unit compiled with -INTS, and INTEGER*4 in a
program unit compiled with -INTL.

33 When this function operates on integers, the arguments may be
a mixture of INTEJGER*2 and IOTEGER*4. The result will have
the type of the longest argument.

A special case arises when IABS, MDD for integers, ISIGN, or
IDIM is passed as an actual argument to a subprogram. In this
case, the invoking program unit has no opportunity to examine
the argument list on which the function will operate.
Therefore it cannot select the version of the function that
will implement the above rule. For compatibility with the
FORTRAN 77 standard, the following rule is used instead.

When IABS, MOD for integers, ISIGN, or IDIM is passed as an
actual argument to a subprogram, the function passed will
accept and produce INTEGER*4 values if the invoking program
unit was compiled with -INTL, and INTEGER*2 values if it was
compiled with -INTS. This is the only case in which integer
types cannot be mixed in the argument list of an integer
intrinsic function.

34 This function cannot be passed as an argument to a subprogram.

Arg>0, Arg is used to initialize the random number
generator. Arg is returned as the value of the
cal l .

Arg=0, The function returns a random number: from »for RND, 0 to 32767 for IRND.

Initializes the random number generator and

The COS function will raise a SIZE error whenever it
calculates COS(x) for a REAL number x that does not fit into a
32-bit long integer.

Fourth Edition, Update 2

SUBROUTINES AND FUNCTIONS

STATEMENT FUNCTIONS

Statement functions are supplied by the user. Statement functions are
useful or convenient when a particular function would otherwise be
repeated at several different points in your program.

A statement function is a single statement procedure that you specify
in much the same way as an assignment statement. After you define the
statement function, the operation you specify executes whenever the
name of the function appears in an expression within the same program
unit. Ihe value of the expression is assigned to the function name you
specify in the statement function.

The definition of a statement function has the following format:

[argument [,argument]...]) = expression

where:

name is the symbolic name of the statement function. The data
type of the statement function can be any of the data types.
Ihe same data type will be returned by the function.

argument is a dummy argument name that holds the value of an
actual argument during execution of the statement function.
You can have a list of dummy arguments specifying the order,
number, and type of actual arguments substituted when the
function is referenced. If the dummy argument name is
duplicated in another statement function, the two names have no
connection since the name is defined only within that function.
You must uses parentheses even if you don't specify a dummy
argument.

expression is any arithmetic, logical, or character expression,
except one whose name duplicates that of a dummy argument and
does not appear in the actual argument list at the function
reference.

A statement function reference has the following format:

name ([argument [,argument] ...])

name is the function name

argument is an actual argument that corresponds to the dummy
argument in the statement function definition.

Fourth Edition

FORTRAN 77 Reference Guide

The following examples illustrate valid statement function definitions
and references.

Defini t ions

TOTAL (X,Y,Z) = X+Y+Z

AVG(A,B,) = A*B/2.0

FUNC (A) = A**B+10

References

SUM = NET-TOTAL (TAX, COST, SALES)

PRINT*, AVG(DEFOS,DEDUCT)

Y = FUNC (SALARY)

At compilation time, F77 encounters the function reference and uses the
reference's actual arguments with the dummy argument of the
corresponding statement function. In the illustration above, you can
see that the reference in the first example associates the actual
argument TAX with dummy argument X, CDST with Y, and SALES with Z. The
actual arguments agree in order, number, and type with the
corresponding dummy arguments.

EXTERNAL FUNCTIONS

External functions are supplied by you or from Prime's libraries. (See
the Subroutines Reference Guide for more information.) An external
function, also called a function subprogram, is another type of
subprogram that looks very much like a subroutine or an intrinsic
function. Unlike an intrinsic function or a subroutine, however, a
function subprogram is an external program unit that is compiled
separately from its calling program.

Tto define a function subprogram, you use the FUNCTION statement:

[type] FUNCTION name ([argument [,argument]...])

where:

type is any F77 data type

name is the symbolic name of the function in which the FUNCTION
statement appears. name is an external function name and must
have the same data type as the function name in the calling
program.

nt is a dummy argument.

Fourth Edition

SUBROUTINES AND FUNCTIONS

To execute a function subprogram, you reference the function in an
expression. The function reference has the following format:

name ([argument [,argument] ...])

where:

name is the name of the function.

argument is an actual argument or argument list of data items
whose values are transferred to the function subprogram from
the calling program and are treated the same as in subroutine
c a l l s .

You call a function subprogram by using its name and actual arguments
in an expression. For example, the assignment statement:

VALUE = OOST(X)

contains a function reference to a function subprogram called COST. X
is an actual argument that will be associated with a dummy argument in
the EUNCTION statement. The reference COST(X) passes the value in X to
the function subprogram. After statements in the subprogram are
executed, control returns to the main program. A single value for X is
now available to the expression in the main program.

Caution

When a function reference appears in an expression, evaluation
of the function must not alter the value of any other part of
the expression, either directly or by altering arguments to
other functions.

SUBROUTINES

A subroutine subprogram, also called a subroutine, is a separate
program unit that accomplishes some particular computing task. It is
placed immediately after the main program. A subroutine operates on
the arguments it is passed and acts as a statement. Figure 8-1 shows
the relationship of a subroutine to a main program.

Fourth Edition

FORTRAN 77 Reference Guide

Main Program CALL statement

Subroutine

STOP
END

SUBROUTINE statement

RETURN
END

Addi t iona l
Subroutines

Relationship of Subroutines to Main Program
Figure 8-1

You invoke a subroutine from the main program by using a CALL
statement:

CALL name [([argument [,argument]...])]

where:

name is the symbolic name of the subroutine

arguments are a list of actual arguments, separated by commas,
agreeing in number, order, and type with the dummy argument
list in the subroutine's header statement. If the argument
list is empty, you can omit the parentheses. Constants and
expressions are permissible as arguments.

When program control reaches a call to a subroutine, control passes to
the subroutine. A subroutine starts with a SUBROJTINE statement; its
statements execute; and a RETURN statement is issued to return control
to the main program. (Alternate returns are discussed later in this
chapter.) Data is returned via the values of arguments and of data in
CDMMDN. Data must not be returned to an actual argument that was an
expression. If this were to happen no error message would be printed
but invalid results might occur.

Fourth Edition

SUBROUTINES AND FUNCTIONS

Caution

In FORTRAN 77, arguments are passed by reference (address).
Therefore it is extremely important not to alter the value of a
dummy argument whose actual argument is a constant or a
parameter (a constant item). Such an alteration will alter the
value kept in storage for the constant item, just as it would
for a variable. If the compiler has utilized the same storage
copy of the constant item in coding other references to the
item, the altered value will be used when the code is executed.

Usinq the SUBROUTINE Statement

A subroutine always starts with a subroutine statement that has the
form:

SUBROUTINE name [(argument [,argument]...])

where:

name is any legal F77 name
characte

fewer than or exactly

arguments are a list of dummy arguments corresponding to actual
arguments passed by the calling program unit. A dummy argument
may be:

• A variable name or an array name that is typed and
dimensioned.

• A dummy subprogram name. You must declare the
corresponding actual argument INTRINSIC or EXTERNAL in
the main program.

• An asterisk corresponding to an alternate return
specifier.

Fourth Edition

FORTRAN 77 Reference Guide

In the following example there is a CALL statement from the main
program to a subroutine, SUB1, to perform calculations on an argument
having a value of 5:

1 = 5
PRINT 10,1
CALL SUB1(I)
PRINT 10,1

10 FORMAT (12)
STOP
END

SUBROUTINE SUB1 (J)
J = J**2
RETURN
END

/* Value printed is 5

/* value printed is 25.

As you can see, SUB1 performs calculations on the value of the argument
(I) passed to the dummy argument (J), then transfers control back to
the main program.

Subroutine Libraries

Prime supplies several libraries of subroutines. These allow IRIMDS
subroutines to be called by an F77 program, and also provide access to
various commonly used utilities. To load a subroutine library, use the
BIND subcommand, LIBRARY:

LIBRARY library name

This command must be given at load time before the unqualified LI
command is given. However, many PRIMDS subroutines and functions are
loaded simply with the unqualified LI.

For more information, see the Subroutines Reference Guide.

Many PRIMDS subroutines require and return short integer
arguments. When long integers are used to supply data to such
a subroutine, convert them directly in the argument list with
the INTS intrinsic function. Arguments to which data is
returned must themselves be short integers, since data cannot
be returned to an expression.

Fourth Edition

SUBROUTINES AND FUNCTIONS

Recursion

In FORTRAN 77, recursion is not permitted. F77 has been extended to
permit recursion in subroutines, though not in functions. The rules
and syntax are identical in recursive and non-recursive subroutine
cal ls.

Number of Ar

The following is a description of the upper limit to the number of
arguments that F77 allows:

254 arguments can be passed to and from subroutines

247 entries may be present in a Namelist block

There are exceptions to these limits:

1. If all the arguments to a subroutine are of type CHARACTER, F77
only allows 127 arguments.

2. If the arguments are of mixed data types (CHARACTER and other
types), the maximum number of arguments is between 127 and 254,
and depends upon the positions occupied by the CHARACTER data
in the argument list.

Similiar restrictions exist for namelist blocks. For information on
using namelist blocks, see Chapter 6.

BLOCK DATA SUBEROGRAM

A block data subprogram is a program unit that has a BLOCK DATA
statement as its first statement. A block data subprogram is
nonexecutable. The BLOCK DATA statement is discussed in Chapter 3.

Fourth Edition

FORTRAN 77 Reference Guide

SEODNEftRY ENTRY POINTS

The ENTRY statement allows you to call a function subprogram or
subroutine subprogram in a place other than where a FUNCTION or
SUBROUTINE statement begins. The ENTRY statement has the following
format:

ENTRY name [([argument [,argument]...])]

where:

name is the symbolic name of an entry in a function or
subroutine subprogram and is called an entry name. If ENTRY
appears in a function subprogram, name is a function name.

argument is a dummy argument corresponding to an actual
argument in a CALL statement or a function reference, argument
can be a variable name, array name or dummy procedure name or
an asterisk. An asterisk is permitted only in an ENTRY
statement in a subroutine subprogram.

A secondary entry is referenced (in a function) or CALLed (in a
subroutine) exactly as the main entry point would be, and supplied
arguments corresponding to its particular argument list. Program
execution begins at the entry and proceeds until a RETURN or END
statement is encountered. ENTRY statements are non-executable and
therefore ignored if encountered.

Figure 8-2 illustrates the use of an ENTRY statement in a subroutine
subprogram.

Calling Proqram

CALL SUB2(A,B,C)

Subroutine

SUBROUTINE SUB2(D1,D2,D3)

CALL SECOND (X, Y)-- ENTRY SECOND (E,F)

I RETURN
^END *'

Flow of Control of a Secondary
Entry Point in a Subroutine.

Figure 8-2

Fourth Edition

SUBROUTINES AND FUNCTIONS

An entry name to a function may be typed by default or in a type
statement. The type may differ from that of the function name and of
other entry names, except that all entry names in a CHARACTER function
must be of type CHARACTER and have the same * (length) specification.
All entry names in a function are automatically equivalenced. Before
the function returns, assignment to an entry name of the same type as
the entry name used in referencing the function must occur.

Alternate returns are permitted following the CALL of a subroutine at
an entry point. Only the statement labels in the entry point's
argument list are counted. Alternate returns are discussed below.

In some versions of EORTRAN IV, the association of actual and
dummy arguments established when a subprogram is invoked at any
entry point persists following return to the invoking program
unit. Consequently, a subprogram can be invoked repeatedly at
various entry points, and reference made after each invocation
to any dummy argument that became associated with an actual
argument at any previous invocation. This technique is not
accepted by any Prime FORTRAN.

ALTERNATE RETURNS

As the above illustration shows, usually a subroutine returns control
to the statement following the point of call. It can also return
control to any labeled executable statement that you specify in the
calling program unit through the use of a RETURN statement. The RETURN
statement has the following format:

RETURN [n]

where:

n is an integer expression indicating the alternate point in
the main program that is to receive control from the subroutine
subprogram. If n is not specified, a normal return to the
statement following the CALL statement is executed.

Fourth Edition

FORTRAN 77 Reference Guide

The subroutine can select the statement to which
Alternate returns are accomplished as follows:

i t w i l l r e t u r n .

The label of every statement to which the subroutine might
return must appear in the argument list of the CALL statement,

An asterisk appears in the dummy argument list of the
subroutine at each position corresponding to a statement label
in the CALL statement.

RETURN statements in the subroutine may optionally be followed
by an integer expression n. When control encounters a RETURN n
in the subroutine, the subroutine will return to the statement
of the calling program unit whose label corresponds to the nth
asterisk in the dummy argument list of the subroutine. If
control first encounters a RETURN without a number, or with a
number outside the applicable range, a return to the point of
call will occur.

For example:

PROGRAM ALTRTRN
100 CALL PROC1 (J)
300 CALL PROC2 (K)
500 CALL PROC3 (J, K, *100, 4, *900)
700 GO TO 100
900 SDDP

END

SUBROUTINE PROC3 (J,K,*,M,*)
IF (I .EQ. J) RETURN
IF ((I + J) .EQ. K) RETURN 1 /* Returns to stmt 100
IF ((I + K) .EQ. J) RETURN M/2 /* Returns to stmt 900
R E T U R N / * R e t u r n s t o s t m t 7 0 0
END

Alternate returns are permitted following the CALL of a subroutine at a
secondary entry point. Only the asterisks in the dummy argument list
at the point of entry are counted.

Fourth Edition

SUBROUTINES AND FUNCTIONS

SUBPROGRAM ARGUMENTS

Adiustable Subprogram Elements

The length of the value returned by a type CHARACTER function, the
lengths of type CHARACTER dummy arguments in a subprogram, and the
dimension bounds of an array dummy argument, can be made adjustable.
An adjustable element will take on the length or bounds of the
corresponding actual argument at each call. Such flexibility can
considerably increase the versatility of a subprogram.

Adiustable Character Functions

Tto make a CHARACTER function adjust the length of its result,
its length as an asterisk in parentheses:

specify

CHARACTER*(*) FUNCTION CFUNC (A,B)

In each program unit referencing the adjustable function, use a
type-statement to assign the CHARACTER type and a length to the name of
the function. The length of the value returned at each function
reference will be the one assigned to the function in the calling
program unit.

Adiustable Character Ar<

TO make a type CHARACTER dummy argument adjustable, specify its length
to be (*) in a type-statement:

SUBROUTINE YORD (CVAR)
CHARACTER*(*) CVAR

CVAR will take on the length of the actual argument corresponding to it
at each call.

Fourth Edition

FORTRAN 77 Reference Guide

Assumed-size Arrays

To create an assumed-size array, replace the upper bound of the last
dimension specification in a fixed or adjustable dummy array
declaration with an asterisk. That dimension will take on the upper
bound associated with it in the corresponding actual array in the
calling program unit.

Adjustable Array Dimensions
To create an adjustable array, pass the name of an existing array to an
appropriately typed dummy argument in a subprogram. Dimension the
dummy array using:

1. Integer variables passed to integer dummy arguments in the
subprogram.

2. Integer variables from CDMMDN.

Expressions are permitted in adjustable array bound declarations,
subject to the following restrictions:

• All variables must be INTEGER

• No array references
• No function references

Example:

REAL FUNCTION ARRTEST(ANAM3, DIME, DIM2)
IMILICIT INTEGER (A-Z)
CDMM)N /BND/ DIM3,N
DIMENSION ANAPE (DIML, DIM2:N, 1:10, DIM3+12)

When control passes to a subprogram containing an adjustable array, the
array bounds are determined before execution begins. The variables
used may therefore be redefined or become undefined during execution
without affecting the dimensional properties of the array.

Caution

subsets of the original array, but are equivalenced to the
original array as a whole. The adjustable array cannot be
longer than the corresponding actual array.

Fourth Edition

SUBROUTINES AND FUNCTIONS

nninq Arravs as Ar<

The F77 compiler can produce two types of object code. Ordinary code
can address only within a segment. Boundary-spanning code is capable
of addressing across the boundary between one segment and the next.

Whenever an array extends across a segment boundary, all references to
it must consist of boundary-spanning code. Those portions of it in
segments higher than the one in which it begins are inaccessible to
ordinary code.

Arrays in local static or dynamic storage present no problem. There
may be at most one segment for all static variables, and another for
all dynamic variables: hence no boundary-spanning is possible. Arrays
in CDMMDN blocks under 128K bytes (one segment) long present no problem
because such blocks are always loaded within a single segment.

An array in a CDMMDN block over one segment long (a large CDMMDN block)
may or may not span a segment boundary, depending on its size and its
location in the block. In practice, no array under one segment long
should ever be placed in a large CDMMDN block. See the Note below.

When a program unit is compiled, the F77 compiler inspects any CDMMDN
statements in it for CDMMDN block size and the presence of arrays. All
references in the program unit to any array the compiler knows to be in
a large CDMMDN block will automatically be compiled with
boundary-spanning code. No special action is required of the
programmer in this case.

However, when a dummy array occurs in a subprogram, the compiler is not
aware of the storage status of any actual array that will become
associated with it when the subprogram is called. Therefore, the
compiler does not know whether to compile references to the dummy array
with ordinary or boundary-spanning code. The programmer must specify
to the compiler the correct action — in this case the use of the
-BIG/-iND_BIG compiler option.
When a subprogram is compiled with -ND_BIG (the default), dummy array
references within it will be compiled with ordinary code. The actual
array passed to any dummy array in it must then be contained within one
segment. When a subprogram is compiled with -BIG, all references it
makes to any dummy array will be compiled with boundary-spanning code.
The actual array passed to any dummy argument in it may then span a
segment boundary, though it need not do so.

Fourth Edition

FORTRAN 77 Reference Guide

A dummy-array reference compiled with boundary-spanning code will
execute correctly for any actual array, whether it spans a segment
boundary or not. However, boundary-spanning code executes more slowly
than ordinary code because it performs more complex address
calculation. The -BIG option should therefore not be used
unnecessarily.

CDMMDN block, since this will cause the inefficiency of
boundary-spanning code to be needlessly incurred in everyreference to the array.

IsSISIM f̂iL ̂ S®S¥Slj?Js /'-$s§"il5I3|̂ @

When a CHARACTER array that may cross a segment boundary is passed as
an argument, the element size of the actual array and the dummy array
must be the same. This is an F77 restriction required to insure that
no element of the array can fall across a segment boundary. See the
CDMMDN StatemfeSfe. i!)oj wW§Ki~S e' iiiW. Mi23^BEiK2SsisES @® '&^A!M£l wkkSk
(sraifrgraffre

rograms as An

Entire subprograms may be passed as arguments to other subprograms,
where they may be referenced or passed again. The general method is as
follows:

1. In the invoking program unit, name any intrinsic functions to
be passed in an INTRINSIC statement, and any user supplied or
library subprograms to be passed in an EXTERNAL statement.

2. In the" actual argument list for each invocation, the
subprograms which are to be passed to the invoked subprogram
are named.

3. Place the following dummy names at the entry point to the
called subprogram (either in its header or an ENTRY statement):

• An untyped dummy subroutine name at each position
corresponding to an actual argument that is a
subroutine.

• An appropriately typed dummy function name at each
position corresponding to an actual argument that is a
function.

Fourth Edition

SUBROUTINES AND EUNCTIDNS

4. In the invoked subprogram, use the appropriate dummy subprogram
name wherever a reference to the corresponding actual
subprogram is desired.

For example, suppose that the program called MAIN calls the subroutine
SUB repeatedly, and each time passes one of the intrinsic functions
DSIN and DCOS, as well as one of the user-supplied subroutines GREATER
and LESSER. The code could be as follows:

PROGRAM MAIN
INTRINSIC DSIN, DODS
EXTERNAL GREATER, LESSER
CALL SUB (DSIN, GREATER, 1.D0)
CALL SUB (DCDS, GREATER, 1.D0)
CALL SUB (DODS, LESSER, 1.D0)
STOP
END

SUBROUTINE SUB (TRIG, COMPARE, NUM)
DOUBLE PRECISION TRIG, NUM
IF (TRIG(NUM) .GT. ETAN (NUM)) CALL CDMPARE (NUM)
RETURN
END

Not all intrinsic functions can be passed as arguments. See the
section F77 INTRINSIC FUNCTIONS discussed previously in this chapter
before passing intrinsic functions.

Fourth Edition

Compiling
\bur Program

Prime's F77 compiler translates the statements in your source program
into an object (binary) module and produces an optional listing file.
This binary module contains the machine code that is needed to link and
execute your program. The optional listing file contains a compiler
output listing that gives error and statistical information, and other
helpful messages and information about your source program.
This chapter describes:

• How to compile FORTRAN programs

• How to specify options to the compiler

• Compiler error messages

• Compiler options

For information on using BIND to link your program, see Chapter 10.

COMPILING AN F77 PROGRAM

After you have entered your source program into the system using ED or
EMACS, and have named your program with a .F77 suffix, you are ready to
invoke the F77 compiler.

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

&a*g i jg i it* »*j *i ions to the Compiler

To invoke the FORTRAN 77 compiler from the PRIMDS command level, use
the F77 command:

F77 pathname [-option 1] [-cption2] ... [-option n]

pathname is the pathname of the source program you want to compile.

options are the names of the compiler options that you invoke on the
command line. These options provide information and input while you
compile, link, and execute your program. Every option must begin with
a hyphen (-).

For example:

OK, F77 TEST -BIG
[F77 Rev. 19.4]
0000 ERRORS [<.MAIN.> F77 Rev. 19.4]
OK,

You can specify more than one option on the command line, in any
order. However, if you issue conflicting or redundant options, an
error message will result.

Compiler Error Messaaes

During compilation, the compiler will output an error message each
time it encounters an error in your program. The error messages,
which are self-explanatory, will assist you in finding and
correcting the errors in your program. For every error found, the
compiler displays information about where the error occurred and
the level of severity:

ERROR xxx SEVERITY y BEGINNING CN LINE zzz
Explanation of message

x x x E r r o r c o d e

y L e v e l o f s e v e r i t y

zzz Line number where error begins

explanation Description of the error, and possible remedies.

Errors are classified into four levels depending on the severity of
the error. Table 9-1 describes each level of error.

Fourth Edition, Update 2

COMPILING YOUR PROGRAM

Table 9-1
Error Message Severity Levels

ERROR TYPE: Warning — a recoverable error, object file produced.

Example:

OK, F77 TEST
[F77 Rev. 19.4]

WARNING 250 SEVERITY 1 BEGINNING CN LINE 1
A program unit consisting of just an END statement has been
encountered.

0001 ERRORS [<> F77 Rev. 19.4]
MAX SEVERITY IS 1
OK,

Level 2

ERROR TYPE: Recoverable -— the compiler will attempt corrective
action.

Example:

OK, F77 RAISE
[F77 Rev. 19.4]

ERROR 274 SEVERITY 2 BEGINNING CN LINE 30
Missing END statement is supplied by the compiler.

0001 ERRORS [<RAISE> F77 Rev. 19.4]
MAX SEVERITY IS 2
OK,

Level 3

ERROR TYPE: Nonrecoverable — object file not produced.

Example:

OK, F77 PUZZLE
[F77 Rev. 19.4]

ERROR 369 SEVERITY 3 BEGINNING CN LINE 6
Invalid argument to the "ICHAR" intrinsic function.

0001 ERRORS [<.MAIN.> F77 Rev. 19.4]
MAX SEVERITY IS 3
ER!

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Table 9-1 (continued)
Error Message Severity Levels

Level 4

ERROR TYPE: Abort the compilation.

Example:

OK, F77 POGO
[F77 Rev. 19.4]
Not found. Cannot open file "TEST. FILE" (OPEN)
SOURCE LINE NUMBER 2
0001 ERRORS [<> F77 Rev. 19.4]
MAX SEVERITY IS 4
ER!

End-of-Compilation Message

After the compilation process is complete, the compiler prints an
end-of-compilation message at the terminal. Its format is:

0000 ERRORS [<.MAIN.> F77 Rev. 19.4]

After compilation, control returns to the PRIMDS level.

COMPILER OPTIONS

This section discusses the options available with the F77 compiler.
Most of the options come in pairs, which act as switches to enable
or disable a particular action. The Prime-supplied defaults are
indicated by an asterisk. These defaults can be changed by your
System Administrator.

Table 9-2 lists a summary of compiler options and abbreviations.

▶ -321

The -321 option generates 321-mode code, which is a segmented
virtual mode that takes maximum advantage of Prime's 32-bit machine
architecture (P450 and up).

Fourth Edition, Update 2

COMPILING YOUR PROGRAM

The -32IX option is a new addressing capability added to 32I-mode
code that can speed up the access of arrays larger than one
segment. It also permits use of common blocks larger than one
segment. This option gives the effect of using general registers
as base registers.

A program compiled with the -32IX option can be run only on
a 2550, 9650, 9750, 9950, or 9955 Prime system.

^ *-64V

The -64V option generates 64V-mode code, which is a segmented virtual
addressing mode for 32-bit machines.

▶ *-ALLCW_PREXXNNECTION / ̂ J*LIXW_PREXDNNECTION
Abbreviation: -APRE / -NAPRE

The -ALLCK_PREXXNNECTION option allows for the preconnection of a
listing output to a preopened file unit 2, or of a binary output to a
preopened file unit 3. When files have been preoonnected, the compiler
displays a message indicating that preconnection has occurred.
For example:

OK, BINARY StCW
OK, LISTING FLAKE
OK, F77 CIRCLE -LISTING
[F77 Rev. 19.4]
Note: Binary output will go to pre-opened unit 3 (preconnection). (F77)

Explicit use of -Allow_EREconnection is recommended when using preconnection.
Use -Allow_PREconnection on the command line to suppress this note.
Use -No_Allow_I:REconnection to avoid accidental preconnection.

Note: Listing output will go to pre-opened unit 2 (preconnection). (F77)
Explicit use of -Allow.EREconnection is recommended when using preconnection.
Use -Mlcw_PREconnection on the command line to suppress this note.
Use -No_Mlow_PREconnection to avoid accidental preconnection.

0000 ERRORS [<.MAIN.> F77 Rev. 19.4]
0000 ERRORS [<SIRKLE> F77 Rev. 19.4]
OK,

When the -NO_ALLCW_PREXXNNECTION option is used, no attempt to
perform preconnection is made. The compiler automatically selectsfile units for listing and binary files, opens, and closes them.

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

▶ -BIG / *-NO_BIG
Abbreviation: -BIG / -NBIG

The -BIG option handles arrays spanning segment boundaries.
dummy array can become associated with any array, even if it
crosses a segment boundary.

The -tlD_BIG option specifies that a dummy array can become
associated only with an array that does not cross a segment
boundary.
See Arrays as Arguments in Chapter 8 for details.

• * -BINARY [pathname] / -NO_BINARY

Abbreviation: -B / -NB

The -BINARY option produces an object (binary) file with the name
source-program.BIN. To write the object code to a different file.
use the -BINARY option followed by pathname.

N0J3INARY specifies that no binary object file is to be produced.
Use this option when only a syntax check or listing is desired.

▶ -CLUSTER
Abbreviation: -CLU

-CLUSTER specifies that all routines in a source file be compiled
as a cluster and optimized together. A cluster is a collection of
program units in one source file that have been compiled together
in order to maximize the optimizations that can be performed. Use
of this option means that the compiler can make certain assumptions
that are relevant to optimization. The compiler will check the
validity of these assumptions when possible, but the responsibility
for their validity rests with the user.

The assumptions the compiler will make are the following:

1. The file compiled with the -CLUSTER option is assumed to be
a program with a single entrypoint. If the file has a main
program in it, then that is the entrypoint. Otherwise, if
the user has used the -MAIN option to specify a main entry
procedure, then that routine is the program entrypoint.
Otherwise, the first routine is taken to be the program
entrypoint.

2. The compiler will not make any procedure or data
entrypoints of the cluster visible outside the cluster

Fourth Edition, Update 2

COMPILING YOUR PROGRAM

except the main procedure entrypoint. All other procedures
may be QUICK-called or expanded inline. You must also
specify -OPT 4 when using -CLUSTER for this purpose. The
binaries from such a compilation cannot be combined with
other modules that expect to call these procedures.

▶ -DCLVAR / *-ND_DCLVAR

Abbreviation: -DC / -NEC

The -DCLVAR option controls flagging of undeclared variables. A
warning will be generated for any variable that is used in the program,
but not included in a type statement.

For example:

OK, F77 FRIDAY -DCLVAR
[F77 Rev. 19.4]

ERROR 413 SEVERITY 2 BEGINNING CN LINE 4
"TOTAL" has been defined by the context in which it was used. Declare
all variables, function references, and subroutine references.

ERROR 413 SEVERITY 2 BEGINNING CN LINE 4
"J" has been defined by the context in which it was used. Declare
all variables, function references, and subroutine references.

0002 ERRORS [<.MAIN> F77 REV. 19.4]
MAX SEVERITY IS 2
CK,

-NOJXLVAR specifies that no undeclared variable warnings be generated.

▶ -DEBUG / *-iTO_DEBLG

Abbreviation: -EBG / -NEBG

The -DEBUG option generates full debugger (DBG) functionality code.
With -DEBUG, the object file is modified so that it will run under the
source level debugger. Execution time increases, and the code
generated will not be optimized.

-NOJDEBUG causes no debugger code to be generated.

In Chapter 11 of this book you will find an introduction to the Source
Level Debugger. For complete information on this separately priced
product, see the Source Level Debugger User's Guide.

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

)▶ -DOl / *-NO_D01
Abbreviation: -DO / -NDO

DOl specifies that all DO loops will be of the FORTRAN IV type. This
option is provided for upward compatibility of ETN programs.
The use of the NO_D01 option specifies that FORTRAN 77 DO loops will be
produced. These are described in Chapter 5. They differ significantly
from those in FTN.

The F77 compiler acts as a standard-conforming compiler only when it is
invoked with -NO DOl.

▶ -D_STATEMENT / *-NO_D_STATEMENT

Abbreviation: -D_SMT / *-ND_SIMr

The -D_STATEMENT option causes the F77 compiler to interpret all
statements that begin with a D in column 1 as normal source coding.
The "D Statements" are used primarily for debugging purposes and are
valueable when used with applications that require continual
maintenance.

If the -NO_D_STATEMENT is specified, or if the -D_STATEJMENT option is
not specified, the statements with a D in column 1 are treated as
comments. Thus, with the minimum amount of effort, the user may switch
into the debugging mode or the run mode, and out again by merely using
or not using the -D_STATEMENT option. Reliance upon the DEBUGGER may
be somewhat diminished.

The program fragment below illustrates the use of the -D_STATEMENT
option. (The complete program is Sample Program #1 in Appendix B of
this manual.)

* *
* U P D A T E 1 - D _ S T A T E i M E N T S ■
* ONLY WHEN THE -D_STATEMENT OPTION IS
* IS USED IN THE COMPILATION, WILL THE
* V A L U E F O R S P O R T Y P R I N T

D SPORTY = 2

D PRINT*, SPORTY

Fourth Edition, Update 2

COMPILED YOUR PROGRAM

-DYNM

Abbreviation: -DY

-DYNM allocates local storage dynamically. The opposite option is
-SAVE. Eynamic storage variables are kept in each program's stack. At
each call to a subprogram, space for its dynamic variables is
allocated. At RETURN, the space is freed, and the data lost. HDYNM
allocates dynamic storage to all variables not SAVEd or in OOMMDN, and
is used principally to save space in user memory.

The F77 compiler acts as a standard-conforming compiler only when it is
invoked with -DYNM.

▶ -ERRLIST / *-NO_ERRLIST
Abbreviation: -ERRL / -NERRL

The -ERRLIST option controls the generation of an errors-only listing.
A listing file named sour ce-pr ogr am. LIST will be generated. This file
contains only the error messages for the current compilation. -ERRLIST
has no effect when a full source listing is specified or implied.
The -NO_ERRLIST option causes an errors-only listing file to be
generated. Does not override the -LISTING option.

▶ *-ERRTTY / -NO_ERRTTY
Abbreviation: -ERRT / -NERRT

The -ERRTTY option controls printing of error messages at the terminal.
Error messages will be printed at the terminal during compilation.

The -NO_ERRTTY option causes no error messages to be printed. They
will still be included in the source listing file, if any.

▶ -EXPLIST / *-NO_EXPLIST (Implies -LISTING)
Abbreviation: -EXP / -NEXP

The -EXPLIST option inserts a pseudo-assembly code listing into the
source listing. Each statement in the source will be followed by the
pseudo-PMA (Prime Macro Assembler) statements into which it was
compiled. For information on EMA, see the Assembly Language
Programmer's Guide.
The -ND_EXPLIST option causes no assembler statements to be printed in
the listing.

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Figure 9-1 contains a sample listing created with -EXP.

OK, F77 FRIDAY -EXPLIST
[F77 Rev. 19.4]
0000 ERRORS [<.MAIN.> F77 Rev. 19.41

OK, SLIST FRIDAY.LIST
SOURCE FILE: MDNTH>DAY>FRIDAY.F77
COMPILED ON: 850211 AT: 21:11 BY: F77 REV. 19.4
Options selected: FRIDAY -EXPLIST
Optimization note: Currently "-OPTimize" means "-OPTimize 2",

"-FulUDPTimize" means "-OPTimize 4", and default is "-OPTimize 2n.
Options used(* follows those that are not default):

64V Allow_IREconnection No_BIG Binary No_DClvar No_DeBuG No_D01 DYnm
No_ERRList ERRTty EXPlist* No_FRN No_FTN_Entry INTL Listing* LOGL MAp
OFFset* OPTimize (2) No_OverFlow No_IBECB NQ_PRODuction No_RAnge
Silent (-1) THE No_STATistics No_Store_Owner_Field UPcase XRef*

2 INTEGER*2 ARRAY (5), TOTAL
3 DATA ARRAY/10,200,40,55,78/
4 T O T A L = 0

0 0 0 0 3 3 : 1 4 0 0 4 0 C R A
000034: 04.000053S STA SB%+53

5 D O 1 0 0 J = l , 5

000035: 005414.000000 LDL H3%+0
000037: 011415.000054S STL SB%+54

6 T O TA L = T O TA L + A R R AY (J)

000041:
000043:
000045:
000046:
000047:
000050:

005415.000054S
011415.000056S

LDL SB%+54
STL SB%+56

02.000053S LDA SB%+53
15.000057S LDX SB%+57
06.000423L ADD LB%+423,X
04.000053S STA SB%+53

Pseudoassembly Code Listing
Generated with -EXPLIST Option

Figure 9-1

Fourth Edition, Update 2

COMPILING YOUR PROGRAM

▶ -EXTENDED_CHARACTER_SET / *-NO_EXTENDEDjCHARACTER_SET

Abbreviation: -ECS / -NECS

Prior to Revision 21.0 of F77, the high-order bit of an ASCII-7
character representation was always set. Thus a 40 (octal) and 240
(octal) passed to the intrinsic function CHAR both returned the SPACE
character. At Revision 21.0, F77 supports Prime Extended Character Set
(Prime ECS), so each of these arguments can produce a unique character;
40 (octal) returns NBSP (ND-BREAK SPACE), and 240 (octal) returns SP
(SPACE). The full Extended Character Set is printed in Appendix A.

To take advantage of this new capability, the -EXTENDED_CHARACTER_SET
(-ECS) compiler option must be used. This option causes all unique
arguments submitted to the CHAR intrinsic function to return unique
characters.

-NO_EXTENDEDjCHARACTER_SET causes the CHAR function to map the argument
into the range of values 128 through 255. Thus CHAR X will give the
expected character when X is in the range of 128 through 255
(pre-Revision 21.0 characters). Should X be in the range of 000 to 128
(new characters in Prime ECS), then CHAR will map the value of X into
the range of values, 128 through 255. For instance, if X = 34, CHAR(X)
should return the Cent Sign but instead it will return # or the same as
if X = 163.

▶ -FRN / *-ND_FRN
Abbreviation: -FRN / -NFRN
The Floating Point Round option improves the accuracy of calculations
involving single-precision real numbers. Such numbers are REAL orREAL*4 in F77.

When the -FRN option has been given, all single-precision numbers are
rounded each time they are moved from a register to main storage. The
method of rounding is: if the last bit of the mantissa is 1, add a 1
to the second-to-last bit, then set the last bit to 0. This rounding
reduces loss of accuracy in the low-order bits when many calculations
are performed on the same number.

The -FRN option does not affect double-precision real numbers
(REAL*8, DCUBLE PRECISION) or quadruple floating point precision
numbers (REAL*16). It causes a slight increase in execution time, and
should therefore be used only when maximum accuracy is a major
consideration.

-ND_FRN will cause no rounding to be performed.

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

▶ -FTOJENTRY / *-NO_FTN_ENTRY
Abbreviation: -FTNE / -NETNE

The use of the -FTN_ENTRY option considers that all calls where
procedure names are being passed as actual arguments are calls to FTN
procedures.
-NO_E*TN_ENTRY considers all calls where procedure names are being
passed as actual arguments are calls to a non FTN procedure.

▶ -FULL_HELP
Abbreviation: -FH

The -FULL_HELP option is similar to the -HELP option, except that in
addition to the usage summary, a description of the meaning of each
compiler option is given. The -HELP option is described below.

^ -FULLJQPTIMIZE
Abbreviation: -FOPT

-FULLJDETIMIZE ensures that the maximum amount of optimization
available is used. A note in the listing file will show the current
level of optimization implied by the use of this option. The default
of -FULLJDETIMIZE is equivalent to OET 6; however, -CLUster must be
specified additionally to achieve inline expansions.

▶ -HELP
Abbreviation: -H

The -HELP option produces information on using the F77 compiler. The
compiler displays a usage summary and a list of all options available.

-INIUT pathname

Abbreviation: -I

This is an obsolete option. -INPUT is an alternative way to specify
the source of the compilation, pathname specifies the name of the
source program. If pathname is TTY, then input will come from the
terminal. This option should not be used if the pathname immediately
follows the F77 command. This is the same as the -SOJRCE option.

Fourth Edition, Update 2

OOMPILDC YOUR PROGRAM

▶ *-INTL / -INTS

These options determine default lengths for type INTEGER data items
whose length is not explicitly declared.

The -INTL option specifies that every type IOTEGER data item, including
constants and parameters, will be compiled as INTE)3ER*4 unless the item
has been explicitly declared INTEGER*2 in a type statement.

The -INTS option specifies that every such data item will become
INTEGER*2 unless it is explicitly declared IOTEGER*4. A constant will
remain INTEGER*4 under -INTS if:

• Its value lies outside the INTEGER*2 range.

Its representation, including leading zeros, contains more than
five decimal or six octal digits.

The F77 compiler acts as a standard-conforming compiler only when it is
invoked with -INTL.

▶ -LISTING [destination] / *-ND_LISTIN3
Abbreviation: -L / -Mi

The -LISTING option controls the creation of the source listing file.
If you do not specify destination, the listing file is named
source-program. LIST, destination must be one of the following:

TTY The listing will be displayed at the terminal.

SPOCL The listing will be spooled directly to the line
printer. Default SFCXX arguments are in effect.

pathname The listing will be written to the file named
pathname. LIST

-NO_LISTTNG causes no listing file to be created.

▶ *-LOGL / -LOGS
The -LOGL and -LOGS options determine default lengths for type LOGICAL
data items whose length is not explicitly declared, and for the logical
constants.

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

-LOGL specifies that every type LOGICAL data item will be compiled as
L0GICAL*4 unless the item has been explicitly declared L0GICAL*2 in a
type statement. This is the default.
-LOGS specifies that every type LOGICAL data item will be compiled as
LOGICAL*2 unless it is explicitly declared L0GICAL*4 in a type
statement.

The F77 compiler acts as a standard-conforming compiler only when it is
invoked with -LOGL.

▶ -MAIN program entry-name
-MAIN specifies a top-level routine as the main program entrypoint.
This option is used in conjunction with the -CLUSTER option.

£▶ -MAP / *-NO_MAP (Implies -LISTING)
Abbreviation: -MA / -NMA

The -MAP option produces a listing file that contains a reference map
of data and procedure names. TO get a full cross-reference of usage
information for each symbolic name, use the -XREF option.

NO_MAP produces a listing file that includes only the program and error
messages without a variable reference map.

^ -MAPWIDE [decimal integer]
Abbreviation: -MAPW

(Implies -LISTING)

-MAPWIDE specifies the width in number of characters of the
cross-reference map that appears in the listing file, as well as the
width of the options list that appears at the beginning of the listing
file. The legal range of values for the decimal integer argument is
from 80 to 160 inclusive. The default width of the cross-reference
map, if -MAPWIDE is not specified is 80, provided that a listing is
being produced. The default width if -MAPWIDE is specified without an
argument is 108.

Fourth Edition, Update 2

COMPILING YOUR PROGRAM

▶ -MAX_GROWTH_PERCENT [decimal_integer]

Abbreviation: -MXGR

-M^_GRCWTH_PERCENT specifies a suggested limit to the growth of the
size of a program due to optimization. decimal_integer is the limit to
the growth expressed as a percent of the original program size. The
default percent is 100; the percent cannot be 0. This size is a
suggestion only; there is no guarantee that the growth in program size
will not exceed it.

▶ -MAX_SuB_STATEWENTS_INLINE [decimal integer]

Abbreviation: -MSSI

-MAX_SuB_CTATEiMENTS_INLINE specifies the maximum number of executable
source line statements in a subroutine in order for it to be expanded
inline. The compiler optimizes for faster execution by avoiding the
overhead of procedure calls through inserting their code inline,
thereby having an effect on the size of programs.
If no argument is present, or if the option is omitted entirely, the
number of source lines defaults to 20.

▶ -MAXERRORS [decimal integer]
Abbreviation: -MAXE

-MAXERRORS specifies the maximum number of compilation errors to be
reported. If in a given compilation the specified maximum is reached,
then an error message is issued and the compilation is aborted. The
legal range for the number of errors to be reported is 1 to "infinity"
(32767).
The default maximum number of errors, if -MAXERRORS is not specified,
remains 100; the maximum number of errors that can be reported if
-MAXERRORS is specified without a decimal argument, is "infinity".

▶ -NESTING / *-ND_NESTIN3 (Implies -LISTING)
Abbreviation: -NE / *-NNE

The -NESTIN3 option generates compiler listing files with numbers
alongside each statement indicating the nesting level of the statement
within the compilation unit.

When -NESTUSG is invoked, the -LISTING option is enabled and a column

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

of numbers appear between the statement ID numbers (at the lef thand
margin) and the F77 statements. For example:

Statement Nesting F77
N u m b e r L e v e l S t m t

l J = 1 0
I DO 100 I = 1,10

K(I) = I
IF (I .BQ. 5) THEN
J = J + 2

ELSE
J = J - 1

ENDIF
PRINT *, K(I)
100 CONTINUE

> E N D

-NOJMESTING disables the option.

~ • -OFFSET / *-NO_OFFSET (Implies -LI&TIN3)

Abbreviation: -OFF / -NOFF

The -OFFSET option appends an offset map to the source listing. For
each statement in the source program, the offset map gives the offset
in the object file of the first machine instruction generated for that
statement.

)▶ *-OPTIMIZE [decimal-integer]

Abbreviation: -OET

-OPTIMIZE controls the optimization phase of the compiler. Optimized
code runs more efficiently that non-optimized code, but takes somewhat
longer to compile. The decimal-integer that follows -OPTIMIZE
specifies one of the following levels:

Level Meaning

i Performs no optimizations. Turns optimization off.

Fourth Edition, Update 2

COMPILING YOUR PROGRAM

Replaces certain code patterns with more efficient ones.

Eliminates common subexpressions. (-OPT 2 is the default
level of optimization.)

Moves invariant expressions outside of loops.

Performs strength reduction in loops, optimizes GOTOs and
statement labels, optimizes certain conditional branches,
performs loop test copy, performs inductive variable
replacement, optimizes loop array addresses. When used
with -CLUSTER, makes quick procedure calls where
possib le .

Performs constant propagation, integer constant folding,
d e t e c t s u n i n i t i a l i z e d v a r i a b l e s , e l i m i n a t e s d e a d
computat ions, opt imizes discovered loops, performs
straightline array addresses, performs strength reduction
with SAVEd and COMMON variables.

Provides inline expansion of statement functions. When
used with -CLUSTER, provides inline expansion of
subroutines.

Note

Each optimization level performs all the optimizations of the
next lower level, plus those that are listed.

The level of optimization that you select is identified in the
optimization note of the compiler's listing output file.

▶ -OVERFLOW / *-ND_CVERELCW
Abbreviation: -CVF/ -NOVF

The -Ov/ERFLCW option enables the integer exception handling mechanism
when integer arithmetic causes an integer to be larger than the data
item to which it is assigned, or a divide by zero is encountered.

-OVERELCW affects integer calculations only. It causes FIXELWERFLOW
to be raised at runtime if the result will not fit.

-ND_CVERELOW does not enable integer overflow conditions.

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

For example:

INTEGER*2 I, J, K
I = 10
J = 32767
K = 0
K = I + J
STOP
END
OK, F77 Qv/F -CVERFLOW
0000 ERRORS [<.MAIN.> F77 Rev. 19.4]
OK, BIND -LOAD OVF -LI
[BIND rev 19.4]
BIND COMPLETE
OK, RESUME CVF

FIXEDOVERFLOW raised at 4345(3)/1012
(fixed binary)

ERROR raised at 4345(3)/1012
(no on-unit for FIXEDOVERFLOW)

Here is an example of a divide by zero encountered at runtime:

INTEGER*2 I,J,K
1=10
J=32767
K=0
I=J/K
STOP
END

OK, F77 ZERO -CVERFLOW
0000 ERRORS [<.MAIN.> F77 Rev. 19.4]
OK, BIND -LQM3 ZERO -LI
[BIND rev .
BIND COMPLETE
OK, R ZERO

ZERODIVIDE raised at 4351(3)/1011
(fixed binary)

ERROR raised at 4351(3)/1011
(no on-unit for ZERODIVIDE)

If you specify the -Ov/ERFLOW option under certain
circumstances, you may receive a ETXEDXiVERELCW error message
unexpectedly. If your program

Fourth Edition, Update 2

COMPILING YOUR PROGRAM

1. Contains INTEGER*2 or INTEGER*4 variables, and

2. Contains an IF statement comparing these variables,

then the computation in the comparison may cause an overflow
even though the integers themselves are within the INTEGER*2 or
INTEGER*4 range of values. For example, the statements

INTEGER*2 I, J
1 = 5
J = -32765
IF (I .LT. J) THEN WRITE (1,*) 'THIS WILL NEVER PRINT*

generate a runtime overflow message, because the compiler
performs the computation

5 - (-32765)

which yields 32770. In most such cases the solution is either
to declare the variables INTEJ3ER*4 or to change the comparison.
Rewriting the IF statement above as

IF (J .GE. I) WRITE (1,*) 'ALL OK'

solves the problem.

▶ -PBECB / *-NO_IBECB

Abbreviation: -PBECB / -NPBECB

-PBECB causes F77 to place the Entry Control Block (ECB) of each
subprogram it compiles into the procedure frame, except for BLOCKDATA
subprograms that do not have an ECB. The compiler ignores this option
when it is compiling a main program; it will always put a main
program's ECB into the link frame.

The -PBECB option is useful for large programs that have many
subprograms. On shared systems, users running programs compiled with
this option have smaller working sets, and will demand less of system
paging resources.

-NO_PBECB does not place Entry Control Blocks in the procedure frame.

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

It is recommended that you do not use -IBECB when creating an
EPF using BIND. Because EPFs have read-only procedure code,
they cannot make full use of object files that have been
compiled with this option. The procedure will not be shared
between users.

▶ -PRODUCTION / *-N0_PRODUCTION
Abbreviation: -PRCD / -NPROD

-PROEUCTION generates code for partial debugger functionality.
-PROEUCTION is similar to DEBUG , except that the code generated will
not permit insertion of statement break points. Execution time
increases less than when DEBUG is given.

-N0_PRODUCTION causes no production-type code to be generated.

 ̂-RANGE / *-ND_RANGE
Abbreviation: -RA / -NRA

The -RAN3E option controls error checking for out-of-bounds values of
array subscripts and character substring indexes. Error-checking code
is inserted into the object file. If an array subscript or character
substring index takes on a value outside the range specified when the
referenced data item was declared, a runtime error will be generated.
This option is not designed to work on assumed-size arrays.

-ND_RAN3E causes no code to be generated to check for out-of-bounds
values of subscripts and indexes.

▶ -SAVE
Abbreviation: -SA

-SAVE allocates storage statically. This option is the opposite of the
-DYNM option, which allocates storage dynamically. Static storage
variables are kept in the link frame. They exist at all times, and
maintain their values until the program terminates.

All variables specified in a SAVE statement or initialized in a DATA or
type-statement are static. All variables in COMMON are static. This
option affects only variables not SAVEd or in OOMMDN.

Fourth Edition, Update 2

COMPILING YOUR PROGRAM

▶ *-SLLENT [decimal-integer]

Abbreviat ion: -SI

The -SILENT option, when used with a decimal argument, suppresses the
printing of error and warning messages of the severity you specify in
decimal-integer. The error and warning messages will be omitted from
any listing files generated. Severity levels are listed in Table 9-1.

If no value is given, a value of 1 is assumed. The option header in
the listing file will show the level of severity you specify in
decimal- integer.

▶ -SOURCE pathname

Abbreviat ion: -S

This is an obsolete option. -SOURCE specifies the source of the
compilation, pathname specifies the name of the source program. If
pathname is TTY^ then input will come from the terminal. This option
should not be used if pathname immediately follows the F77 command.

▶ -SPACE

-SPACE specifies that space reduction is to be given preference over
speed in optimization consideration. This option is the opposite of
-TTME, which favors speed over space in reducing the size of optimized
code.

-STANDARD / *-NO_STANE&RD

Abbreviation: -STAN / *-NSTAN

The -STANDARD option allows you to detect PRIME extensions in your
program that might inhibit successful compilation on other commercially
available FORTRAN 77 compilers.

When invoked, severity 1 warning messages will attempt to flag those
portions of FORTRAN 77 code or items that violate ANSI standards which
are detectable at compile time. The error messages will be in keeping
with the current form and behavior of all error messages currently
delivered by F77. See Appendix F for a list of ANSI Standard
violations flagged when this option is used.

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

▶ -STATISTICS / *-NO_STATISTICS

Abbreviation: -STAT / -NSTAT

-STATISTICS displays a list of compilation statistics at the terminal
after each phase of compilation. For each phase the list contains:

DISK Number of reads and writes during the phase,
excluding those needed to obtain the source file.

SECONDS Elapsed real time.

SPACE Internal buffer space used for symbol table, in 16K
byte units.

NODES The number of symbol table nodes that the compiler
is using in the program.

PAGING Disk I/O time.

CPU CPU time in seconds, followed by the clock time
when the phase was completed.

The -NO_STATISTICS option does not display compilation statistics at
the terminal.

Here is an example of compilation statistics generated using the
-STATISTICS Option:

OK, F77 FRIDAY -STATISTICS
[F77 Rev. 19.41
PHASE DISK SECDNDS SPACE NODES PAGING CHJ
FORTRAN 73 0.00 0.53 21:19:53
DECLARE ^^^HJ 73 0.00 0.09 21:19:53
ALLOCATOR 88 0.00 0.17 21:19:54
VMDDE ^^^KH 124 0.00 0.60 21:19:54
TOTAL 124 0.00 1.39 21:19:54

CDDE SIZE: 102
STATIC SIZE: 34
SOURCE LINES: 16
LINES IER MIN: 671

0000 ERRORS [<.MAIN.> F77 Rev. 19.41
OK,

> *-SRDRE_CWNER_FIELD / -NO_STORE_CWNER_FIELD

Abbreviation: -SOF/ -NSOF

-STORE_OWNER_FIELD stores the identity of the current program in a
known place for use by traceback routines. This option is useful for

Fourth Edition, Update 2

COMPILED YOUR PROGRAM

debugging F77 programs, since utilities such as DMSTK will have access
to module names. Use of this option will increase the size of the
generated code and linkage and will slightly degrade execution time of
user's programs.

The -NO_STC)RE_OWNER_FIELD option omits this small code sequence for
extremely time-critical programs.

▶ *-TIME

The -TIME option specifies that speed is to be given preference over
space reduction in optimization consideration. This option is the
opposite of -SPACE, which favors space over speed in reducing the size
of optimized code.

▶ *-UPCASE / -LCASE

Abbreviation: -UP / -LC

The -UPCASE option treats all lowercase letters in the source program
as uppercase, except in Hollerith and CHARACTER constants.

-LCASE distinguishes lower and uppercase characters in the source
program. Keywords must be in uppercase only.

▶ -XREF / *-NO_XREF (Implies -LISTING)

Abbreviation: -XR / -NXR

The -XREF option appends a cross reference to the source listing. A
cross reference lists, for every symbolic name, the number of every
line on which the variable was referenced.

Also, the letter A or M may be appended to a line number. If the
letter A appears, it indicates that the symbolic name is an argument.
If the letter M appears, it indicates that the variable was modified
(that it appeared on the left-hand side of an assignment operator).

On the printout of a cross reference listing, under the column SIZE
(DEC), C refers to character, and H refers to half-words.

-NO_XREF does not generate a cross-reference listing.

Figure 9-2 contains an example of a cross-reference listing.

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

OK. Fll FRIDAY -XREF
[F77 Rev. 19.4]
0000 ERRORS [<.MAIN.> F77 Rev. 19.4]

OK, SLIST FRIDAY. LIST
SOURCE FILE: <M3NTH>DAY>FRIDAY.F77
COMPILED ON: 850211 AT: 21:21 BY: F77 REV. 19.4
Options selected: FRIDAY -XREF
Optimization note: Currently "-OPTimize" means "-OPTimize 2",

"-FulUDPTimize" means "-OPTimize 4", and default is "-OPTimize 2".
Options used(* follows those that are not default):

64V Mlow_PREconnection No_BIG Binary No_DClvar No_DeBuG No_D01 DYnm
No_ERRList ERRTty No_EXPlist No_FRN No_FTN_Entry INTL Listing* LOGL MAp
No_OFFset OPTimize (2) ND_OverFlcw No_PBECB No_PRODuction No_RAnge
Silent (-1) TIMS No_STATistics No_Store_Owner_Field UPcase XRef*

INTEGER*2 ARRAY(5), TOTAL
DATA ARRAY/10,200,40,55,78/
TOTAL=0
DO 100 J*l,5

TOTAL=TOTAL+ARRAY (J)
IF(J.EQ.3) THEN

WRITE(1,110) TOTAL

110 FORMAT(14)
ENDIF

100 CONTINUE
WRITE(1,200) TOTAL

200 FORMATCTHE TOTAL OF ARRAY = ',14)
STOP
END

EXTERNAL ENTRY POINTS

ENTRY POINT PROGRAM UNIT

.MAIN. ENTRY REF 2

MAIN PROGRAM .MAIN. CN LINE 2

SYMBOLIC
NAME

100
110
200
ARRAY

STORAGE
CLASS

CDNSTANT
CONSTANT
CDNSTANT
STATIC

DYNAMIC

SIZE LOC
(DEC) (OCT)

000024

000054

ATTRIBUTES

EXECUTABLE LABEL LINE 12 REF 5 12
FORMAT LABEL LINE 10 REF 8 10
FORMAT LABEL LINE 14 REF 13 14
INTEGER*2 DIMENSION (5) INITIAL RE
2 3 6
INTEGER*4 REF 5 6 7

Cross-reference Listing Generated Using -XREF
Figure 9-2

Fourth Edition, Update 2

COMPILING YOUR PROGRAM

Table 9-2
Summary of Compiler Options and Abbreviations

Option Abbreviat ion Significance1 1
-321 Produce 321 mode

code

-321X Produce optimized 321 mode
code

* -64V Produce 64V mode code
* -ALLOW_PPvECONNECTION -APRE Use of preopened files

-BIG -BIG Boundary-spanning code
* -BINARY -B Creation of object file

-CLUSTER -CLU Cluster routines for
optimization

-D_STATEMENT -DSTMT Treats statements with "D"
in column 1 as source code

-DCLVAR -DC Flag undeclared variables
-DEBUG -DBG Debugger code
-DOl -DO FTN DO loops

* -DYNM -DY Dynamic storage default

-EXTENDED_CHARACrER_SET -ECS CHAR returns ECS characters

-ERRLIST -ERRL Create errors-only file
* -ERRTTY -ERRT Write errors to terminal

-EXPLIST -EXP Expanded source listing
-FRN Floating point round option

-FTN_ENTRY -FTNE Procedure names passed
as arguments, are being
passed to FTN

-FULL_HELP -FH Usage information, option
list, and description

-FULLJDPTIMIZE -FOPT Full optimization
* Denotes Default Option

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Table 9-2 (continued)
Summary of Compiler Options and Abbreviations

Opt ion Abbreviation Siqnificance

-HELP - H Usage information
and option list

-INPUT - I Designate source file
* - INTL -INTL Long integer default

- INTS -INTS Short integer default

-LCASE -LC No source-file case
conversion

-L IST - L Creation of source listing
* -LOGL Long logical-data default

-LOGS Short logical-data default

-MAIN Main entry point of program

-MAP -MA Listing of data and
procedure names

-MAPWIDE -MAPW Specify width of cross-
reference map and
options list

-MAXERRORS -MAXE Maximum number of errors
allowed in a compilation

-MAXJ3RCWTH_PERCENT -MXGR Specifies suggested limit to
growth of program size

-MAX_SUB_STATEMENTS_INLINE -MSSI Provides maximum number
of executable statements
in subroutines

-NESTING -NE Provides nesting level
numbers for statements

-NOJ^LLOW_PRECONNECTION -NAPRE No use of preopened
fi l e s

* -NO_BIG -NBIG No boundary-spanning code

-NO_BINARY -NB No object file

* Denotes Default Option

Fourth Edition, Update 2

COMPILING YOUR PROGRAM

Table 9-2 (continued)
Summary of Compiler Options and Abbreviations

Abbreviation Significance

* -NO D STATEMENT -NDSTMT Treats statements with "D"
in column 1 as comments

* -NO DCLVAR Don't flag undeclared
variables

-NO DEBUG -NDBG No debugger code

* -NO DOl F77 DO loops

* -NO EXTENDED CHARACTER SET -NECS CHAR returns only 7-bit
ASCII characters

* -NO_ERRLIST -NERRL No errors-only file

-NO_ERRTTY -NERRT No errors to terminal
* -NO_EXPLIST -NEXP No expanded source listing

* -NO_FRN -NFRN No floating point option
* -NO_FTN_ENTRY -NFTNE Procedure names being passed

as arguments are being
passed to F77.

* -NO.JilSTING -NL No source listing
* -NO_MAP -NMA No listing of data and

procedure names

-NO_NESTING -NNE Don't provide block level
numbers for statements

* -NO_OFFSET -NOFF No offsets in source listing
* -NOJDVERFLCW -NOVF No integer overflow
* -NO_PBECB -NPBECB Don't load ECBs into

procedure frame
* -NO_PRODUCTION -NPROD No production code
* -NO_RANGE -NRA No range checking
* -NO_STANDARD -NSTAN Don't flag ANSI

standard violations
* Denotes Default Option

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Table 9-2 (continued)
Summary of Compiler Options and Abbreviations

Option Abbreviation Significance

* -NO_STATISTICS -NSTAT Don't print statistics
* -N0_STORE_OWNER_FIELD -NSOF No module names generated
* -NOJCREF -NXR Doesn't generate cross

reference

-OFFSET -OFF Offsets in source listing
* -OPTIMIZE -OPT Optimize object code

-OVERFLOW -OVF Enables integer overflow

-PBECB Load ECBs into procedure
frame

-PRODUCTION -PROD Generate production code

-RANGE -RA Check subscript ranges

-SAVE -SA Static storage default
* -SILENT -SI Suppress warning messages

(default is level 1)

-SOURCE -S Designate source file

-SPACE Space over time in
optimization

-STANDARD -STAN Flag ANSI standard violations

-STATISTICS -ST Print compiler statistics

-STORE_CWNER_FIELD -SOF Module names are generated
into program code for
debugging use

* -TIME Time over space in
optimization

* -UPCASE -UP Convert to uppercase

-XREF -XR Generate cross-reference

* Denotes Default Option

Fourth Edition, Update 2

Linking and
Executing \bur

Program

After you have successfully created an object file using the F77
compiler, you are ready to link and execute your program using the
PRIMDS utilities BIND and RESUME. This chapter discusses:

Hew to use BIND to link your program.
• How to use the RESUME command to get your program running.

BIND is a linking utility that creates an executable program format
runfile from an object file. This runfile, known as an Executable
Program Format (EPF), is the executable version of your program. Some
advantages of EPFs are:

• They are dynamic; they can execute in any segment, or segments,
of PRIMDS.

• They do not need to use the same segment each time they are
invoked.

• They are RESUflEable.

• Several programs can exist in memory at one time without
overwriting each other.

• Programs can call other programs.

Fourth Edition

FORTRAN 77 Reference Guide

For more information on EPFs, see the Programmer's Guide to BIND and
EPFs.

USING BIND

You can use BIND to create an EPF in one of two ways:

1. Interactively by invoking subcommands of BIND. (This is the
subsystem form.)

2. Directly from the PRIMDS command line. (This is the command
form.)

Note

To allow BIND to operate most efficiently, your object file
should have a .BIN suffix. If you follow the compilation steps
as explained in Chapter 9, the F77 compiler will automatically
generate an object file with a .BIN suffix. Naming conventions
are discussed in ABOUT THIS BOOK.

Using BIND Interactively

To invoke BIND interactively, type the command

BIND [EPF-filename]

where:

EPF-filename is the name of the EPF that you want BIND to
create. BIND saves the runfile in a directory that you specify
with the name EPF-filename. RUN. If you do not specify the
EPF-filename, BIND adds the .RUN suffix to the first object
file that you load, saving the runfile in the directory you
specify.

You have now entered the BIND subsytem. You know you' re there when you
see the colon prompt. You will see this prompt each time you press the
carriage return until you leave BIND. That's when your system prompt
will return.

Fourth Edition

LINKDC AND EXECUTING YOUR IROGRAM

Here is an example of using BIND interactively:

OK, BIND MYF77_PROG /♦invoke BIND and name runfile
[BIND rev 19.4] /*BIND version number
: LOAD TEST /*lcad TEST.BIN
: LOAD SUB1 /*load SUB1.BIN
: LI /*load system libraries
BIND COMPLETE /*load completion message
: FILE /*save the EPF, and,
OK, /*return control to PRIMDS

In this example, the EPF is filed in your directory and has the name
MYF77_PR0G. RUN. If you do not specify a filename for the EPF when you
invoke BIND, BIND automatically takes the name of the first object file
that you load and adds a .RUN suffix.

Using BIND From the Command Line

To create an EPF runfile from the PRIflDS command line, type the
command:

BIND [EPF-filename] [-options]

where:

EPF-filename is used in the same way as when you invoke BIND
interactively as a subsystem.

options given on the command line correspond to internal BIND
commands. You must precede each option with a hyphen.

Here is an example of using BIND on the command line:

OK, BIND MYF77_PROG -LOAD TEST SUB1 -LI
BIND rev 19.4]
BIND COMPLETE
OK,

In the above example, BIND creates an EPF that has the name
MYF77_PR0G.RUN containing the linked object files, TEST.BIN and
SUB1.BIN. At this point, BIND displays the message BIND ODMILETE and
returns control to PRIMDS.

Fourth Edition

EORTRAN 77 Reference Guide

Basic BIND Commands

You can link your F77 program modules with the following basic BIND
commands:

• LOAD

• LIBRARY

• FILE

• MP

• QUIT

• HELP

For a brief description and example of each of these commands, see
Table 10-1.

Table 10-1
BIND: Basic Commands

LINKING AND EXECUTING YOUR PROGRAM

Using the LOAD command: This command links your program, starting with
the main procedure and followed by subprograms in any order. The LOAD
command has the following format:

LOAD pathname-1 [pathname-2 pathname-3...]

Each pathname is the name of an object file that you want to bind to
the current EPF. If there is no existing EPF, and you do not specify
one on the command line, BIND creates one with the name you give in the
first pathname.

For example:

LOAD HOME /*links the object file
with the name HOME.BIN, and
files the runfile HOME.RUN
in your directory.

Using the LIBRARY Command: This command is used for linking the
standard system libraries needed by F77, as well as libraries that you
create. The LIBRARY command has the following format:

LIBRARY [library-name-1 library-name-2 library-name-3...]

When you issue the LIBRARY command without specifying a library-name,
BIND automatically links the standard system libraries that are kept in
a directory called LIB. To link libraries that you have created, you
must specify the pathname of the file in library-name.

For example:

LI SAMPLE>MYLIB /*links the file MYLIB.BIN
from the directory SAMPLE.
(You must link the libraries
created by you before
system libraries.)

/*links the standard system
l ib ra r ies

Once the standard system libraries have been linked, you should receive
a BIND GOMHjETE message. If you don't, use the MAP command to identify
any unresolved references.

Fourth Edition

FORTRAN 77 Reference Guide

Using the FILE Command: The FILE command saves the EPF runfile to
disk. The FILE command has the following format:

FILE [EPF-filename]

BIND responds to the FILE command by processing the EPF and filing the
runfile in your dirctory with a .RUN suffix. If you already have an
EPF with the same name, BIND will overwrite the existing EPF. When
BIND completes processing the EPF, control is returned to PRIMDS.

For example:

OK, BIND
[BIND REV 19.4]
: LOAD TEST

BIND COMPLETE
: FILE NEW_TEST

/♦invoke BIND interactively
/*BIND version number
/*link TEST.BIN
/*link standard system libraries
/*BIND completion message
/*file the EPF in your directory

with the filename NEW_TEST.RUN
/♦return control to PRIMDS

If you are using BIND from the command line, you do not have to specify
the file command. By default, BIND will add the FILE command to the
end of the command line:

OK, BIND -LO TEST -LI
[BIND rev 19.4]
BIND OOMR.ETE
OK,

BIND automatically adds a FILE command and saves the runfile in your
directory with the name TEST.RUN.

Using the MAP Command: Use the MAP command to get a load map of any
unresolved subroutine, program, or common block references. The MAP
command has the following format:

MAP [pathname] [option]

pathname specifies that the map is written to a file instead of being
printed at your terminal. The most useful option you can use with the
MAP command is the -UNDEFINED option. This option lists only the
unresolved references in your program. For a complete list of options
that you can use with this command, see the Programmer's Guide to BIND
and EPFs.

Fourth Edition

LINKEN3 AND EXECUTING YOUR PROGRAM

For example:

: MAP MYMAP

: MA -UN

/♦writes a standard map of
your program to the file
MYMAP

/♦displays a list of the
unresolved references

Using the QUIT Command: You can use the QUIT command to return to
PRIMDS without completing the binding process. The QUIT command used
as an option on the command line causes BIND not to create an EPF. The
QUIT command has the following format:

QUIT

The QUIT command ends a BIND session without saving the current EPF.
BIND asks you for a verification if the EPF is not filed before
returning to ERIMDS.

For example:

O K , B I N D /♦ i n v o k e B I N D i n t e r a c t i v e l y
: L O A D T E S T / * l i n k T E S T . B I N
: L I /♦ l i n k s y s t e m l i b r a r i e s
BIND COMPLETE /♦BIND complet ion message
: Q U I T /♦ t e r m i n a t e b i n d i n g s e s s i o n
EPF not filed, ok to quit? ('Yes', 'Y', 'No', 'N'): Y /♦verify
O K , /♦ r e t u r n c o n t r o l t o P R I M D S

Using the HELP Command: BIND has a built-in help facility that you can
use when you are working interactively. The HELP command has the form:

HELP [command-name] [-LIST]

Fourth Edition

FORTRAN 77 Reference Guide

If you use the -LIST option, BIND will display a list of all the
coinmands available. To get help on a specific command, use this
command followed by the command name.

For example:

OK, BIND
[BIND rev 19.4]
: HELP FILE
FILE [<epfname>]

will exit to PRIMDS after filing the EPF.
If <epfname> is specified, the EPF will be named <epfname>.RUN

« 2
OK,

Finding and
Correcting

Runtime Errors

This chapter introduces you to Prime's Source Level Debugger, EBG. The
Debugger is a separately priced product that you can use to help you
find out why your program failed at runtime. Working interactively
with the Debugger, you can stop the execution of your program at
critical points and examine the contents of program variables to see if
they're correct.
The EBG commands that you will learn about in this chapter are:

RESTART

SOURCE

BREAKPOINT

CONTINUE

: , TYHS, and LET

WATCH

HELP and QUIT

This chapter will not teach you everything about the Debugger. You
will only learn enough to debug a simple F77 program. For a more
detailed discussion on this powerful tool, see the Source Level
Debugger's User's Guide.

Fourth Edition

EORTRAN 77 Reference Guide

HCW TO USE THE DEBUGGER

Before you can begin using EBG, you must first complete the following
steps:

1. Create and edit your program using ED or EMACS.

2. Compile your program using the -DEBUS compiler option.

3. Link your program using BIND.

Let's use a program called TEST.F77 to illustrate steps 2 and 3.

OK, F77 TEST -DEBUS
[F77 Rev. 19.4]
0000 ERRORS [<.MAIN.> F77-REV 19.2]

OK, BIND -LOAD TEST -LI
[BIND rev 19.4]
BIND GOMHjETE

OK, RESUME TEST

THIS IS AN F77 TO EBG TEST
ENTER A VALUE FOR X:

ENTER A VALUE EOR Y:

X + Y= 5.00♦♦♦♦ STOP

/♦Compile your program
with the -DEBIX3 option.
No errors.

/♦Link your program
with BIND. Again, no
errors.

/♦Execute your program
with RESUME.

As you can see, even though there were no errors at compilation or load
time, your program produces the wrong results. At this point you can
use the Debugger to find out what happened at runtime.

Entering the Debugger

TO enter the Debugger from the PRIMDS command level, type the following
command:

EBG EPF-filename

where:

EPF-filename is the name cf the executable program file you
want to debug.

Fourth Edition

FINDING AND CORRECTING RUNTIME ERRORS

Once you have entered the Debugger subsystem, EBG will prompt with a
right angle bracket prompt. You will also see some Debugger software
identification information displayed. Here is an example of invoking
the Debugger to debug TEST.F77.

OK, EBG TEST

Dbg revision 1.1 - 19.1 (5-March-1984)

At this point the debugger is waiting for you to enter commands in
response to the right angle bracket prompt.

RUNNING YOUR PROGRAM WITHIN THE DEBUGGER

To start the execution of your program from within the Debugger, use
the RESTART command. This command restarts program execution at any
point within the Debugger. Here is an example of the RESTART command:

OK, EBG TEST

Dbg revision 1.1 - 19.1 (5-March-1984)

> RESTART
THIS IS AN F77 PROGRAM TO EBG TEST
ENTER A VALUE EOR X:

5
EOTER A VALUE FOR Y:

5
X + Y= 5.00
♦♦♦♦ STOP

Program stop at $MAIN\9.
>

You can use this command whenever you want to restart execution of your
program at the beginning of the main procedure.

Note

If you use the RESTART command after execution of your program
begins, the variables initialized in a DATA statement will not
be reinitialized.

Fourth Edition

EORTRAN 77 Reference Guide

LOOKING AT YOUR SOURCE PROGRAM

If you want to take a look at the source code of your program without
leaving the Debugger subsystem, use the SOURCE command. This command,
with it's EDITOR-like subcommands, allow you to move around your source
program. The SOURCE command has the following format:

SCXJRCE source-command [argument]

where:

source-command is any EDITOR subcommand that can be used with
SOURCE.

argument is an EDITOR source subcommand object that may or may
not be used. A line number or text string are examples of
argument.

Table 11-1 gives a list of the most frequently used source EDITOR
subcommands that you will use with the SOURCE command. For more
information on the source EDITOR commands, see THE NEW USER'S GUIDE TO
EDITOR AND RUNDFF.

Table 11-1

SOURCE Subcommands (From ED)
(abbreviations are underlined)

Subcommand Description

TOP Position line pointer to top of file.

BOTTOM Position pointer to bottom of file.

IRINT Print line(s).

WHERE Print current line number.

POINT Position to specific line.

NEXT Move line pointer forward or backward.

DDCATE Locate line with the specified text string.

FIND Locate line with the specified text string
beginning in a given column.

Fourth Edition

FINDING AND CORRECTING RUNTIKE ERRORS

The following example shows how to use the SOURCE command with the
PRINT, TOP, POINT, and NEXT subcommands:

OK, EBG TEST

Dbg revision 1.1 - 19.1 (5-March-1984)

> SOURCE PRINT 23
.: WRITE(lf*) 'THIS IS AN F77 PROGRAM TO EBG TEST'
!: WRITE(lf*) 'ENTER A VALUE EOR X: '
\ : F E A D (1 , *) X
\i WRITE(lr*) 'ENTER A VALUE EOR Y: '
i t R E A D (1 , *) Y
I : X Y = X
' : W R I T E (1 , 1 0) X Y

8: 10 F0RMAT(1X,'X + Y= ',1X,F6.2)
J : S T O P

1 0 : E N D
BOTTOM
> SOURCE TOP
> SOURCE POINT 5

j ; R E A D (1 , *) Y
> SOURCE NEXT

f : X Y = x

By looking at your source program, you notice that you have coded your
program incorrectly. The expression in line number 6 is not correct;
it should read XY = X + Y. When you reedit, recompile and relink your
program, the value for XY will be correct. However, for the sake of
illustrating a few more basic debugger commands, we're not going to
change the source code.

STOPPING EXECUTION OF YOUR PROGRAM

By using the BREAKPOINT command, you can suspend the execution of your
program and take a look at the data at that point. The BREAKPOINT
command has the following format:

BREAKPOINT breakpoint-identifier

breakpoint-identifier is the number of the line in your program
where you want to suspend execution. Execution will stop
i m m e d i a t e l y b e f o r e t h e l i n e y o u s p e c i f y i n
breakpoint-identifier. You can find the source line number by
using the SCURCE command.

Fourth Edition

FORTRAN 77 Reference Guide

If you try to suspend execution on a non-executable statement, the
Debugger will issue an error message.

Here is an example of how the BREAKPOINT command works:

OK, EBG TEST

Dbg revision 1.1 - 19.1 (5-March-1984)

> SOURCE IRINT 23
: WRITE(1,^) 'THIS IS AN F77 PROGRAM TO EBG TEST1
: WRITE(1,^)'ENTER A VALUE EOR X: '

j : R E A D (1 , ^) X
: WRITE(1,^) 'ENTER A VALUE EOR Y: '
: R E A D (1 , ^) Y
: X Y = X

/ : W R I T E (1 , 1 0) X Y
8: 10 FORMAT(IX,'X + Y= ',1X,F6.2)

: S T O P
1 0 : E N D

BOTTOM
> BREAKPOINT 6
> RESTART
THIS IS AN E77 PROGRAM TO EBG TEST
ENTER A VALUE EOR X:

ENTER A VALUE EOR Y:

♦♦♦♦ breakpointed at $MAIN\6

You have suspended the execution of your program just before line
number 6.

CONTINUING EXECUTION OF YOUR PROGRAM

To begin program execution once again after setting a breakpoint in
your program, use the CONTINUE command.

Fourth Edition

FINDING AND CORRECTING RUNTI!*: ERRORS

Here is an example of how to use the CONTINUE command:

OK, EBG TEST

•*Dbg** revision 1.1 - 19.1 (5-March-1984)
> BREAKPOINT 6
> RESTART
THIS IS AN F77 PROGRAM TO EBG TEST
ENTER A VALUE EOR X:

ENTER A VALUE FOR Y:

♦♦♦♦ breakpointed at $MAIN\6
> CONTINUE
X + Y= 5.00
♦♦♦♦ STOP

Program stop at $MAIN\9.
>

EXAMINING AND MODIFYING EftTA

There are three useful commands for looking at and changing the data in
your program: the colon (:), TYPE, and LET commands.

Using the : Command

The : command is used to look at the value of a variable or expression
while your program is suspended. To use this command, specify a
variable or expression after you issue the : character. The : must
be followed by a space.

Here is an example of how the : command works:

Fourth Edition

EORTRAN 77 Reference Guide

OK, EBG TEST

Dbg revision 1.1 - 19.1 (5-March-1984)

> BREAKPOINT 6
> RESTART
THIS IS AN F77 PROGRAM TO EBG TEST
ENTER A VALUE EOR X:

ENTER A VALUE EOR Y:

♦♦♦♦ breakpointed at $MAIN\6
> j_X
X = 5.000000E+00
> j__Y
Y = 5.000000E+00
>

In the above example you can see that both X and Y, when evaluated with
the : command, have the value that was entered for them during program
execution.

Using the TYPE Command

The TYPE command is used to evaluate the data type of a variable or
expression. Frequently, a program fails due a data type mismatch.

Here is an example of the how to use the TYPE command:

OK, EBG TEST

Dbg revision 1.1 - 19.1 (5-March-1984)

> BREAKPOINT 6
> RESTART
THIS IS AN F77 PROGRAM TO EBG TEST
ENTER A VALUE EOR X:

'ENTER A VALUE FOR Y:

♦♦♦♦ breakpointed at $MAIN\6
> TYIE X
real*4 automatic
> TYPE Y
real*4 automatic
>

Fourth Edition

FINDIN3 AND CORRECTING RUNTII13 ERRORS

Using the LET Command

The LET command allows you to assign a new value to a variable. By
doing this, you can test to see what would happen to the execution of
your program with these new values. To use the LET command, you assign
an expression to a variable with an equals sign(=).

Here is how the LET command works:

OK, EBG TEST

Dbg revision 1.1 - 19.1 (5-March-1984)

> BREAKPOINT 6
> RESTART
THIS IS AN F77 TO EBG TEST
ENTER A VALUE EOR X:

ENTER A VALUE EOR Y:

♦♦♦♦ breakpointed at $MAIN\6
> j_X
X = 5.000000E+00
> LET X = 10

X = 1.000000E+01
> CONTINUE
X + Y= 10.00
♦♦♦♦ STOP

Program stop at $MAIN\9.
>

VALUE TRACING

While you're in the Debugger subsystem, you can use the WATCH command
to watch or trace a variable to see how it changes during program
e x e c u t i o n . 3

Fourth Edition

EORTRAN 77 Reference Guide

Here is an example of the WATCH command:

OK, EBG TEST

Dbg revision 1.1 - 19.1 (5-March-1984)

> RESTART
THIS IS A F77 TO DBG TEST
ENTER A VALUE EOR X:

ENTER A VALUE EOR Y:

X + Y= 5.00
**** STOP

Program stop at $MAIN\9.
> WATCH X
> RESTART
THIS IS AN F77 TO EBG TEST
ENTER A VALUE EOR X:

The value of $MAIN\vX has been changed at $VIAIN\4
from 5.000000E+00
to 6.000000E+00

ENTER A VALUE EOR Y:
5
X + Y= 6.00

*♦** STOP

Program stop at $MAIN\9
>

GETTIN3 HELP

If you run into trouble while you are working within the tebiwpr
subsystem, you can use the HELP command to get online help. The HELP
command has the following format:

-LIST
HELP -SYPLLLST

command-name
-syntax-symbol

Fourth Edition

FINDING Pm CORRECTING RUNTIME ERRORS

where:

-LIST prints a list of all EBG commands.

-SYM__LIST prints a list of syntax symbols,

command-name prints the syntax of command-name.

vl prints the definition of

For example:

OK, EBG TEST

♦♦Dbg** revision 1.1 - 19.1 (5-March-1984)

> HELP TYPE / *command l ine syntax o f
TYPE <expression> TYTE command.
> HELP EXPRESSION /*def ini tion of syntax
< E X P R E S S I O N > : s y m b o l .
any valid expression in the default evaluation language
>

HOW TO LEAVE THE DEBUGGER

When you are ready to leave the Debugger and return to PRIMDS level,
use the QUIT command.

Here is an example of the QUIT command:

> QUIT
OK,

You are now at PRIMDS command level.

EOR MDRE INFORMATION...

This chapter only gave you an introduction to using the Debugger.
There are many more features available with the Debugger that will
greatly expedite and simplify the process of debugging your programs.
For a thorough discussion of the Debugger, see the Source Level
Debugger User's Guide.

Fourth Edition

Optimizing F77
Programs

This chapter presents programming suggestions for improving the
performance of F77 programs. Some are reminders of good coding
practice. Others take advantage of implementation techniques in the
F77 compiler. All offer some speedup in program execution.

Multidimensional Arravs

Reference memory as sequentially as possible. For multidimensional
arrays, the leftmost subscript varies the fastest in EORTRAN 77. For
addressing large portions of an array, paging time and working set size
can be significantly reduced by indexing the leftmost subscript the
fastest (e.g., in the innermost loop). Thus,

DIMENSION ARRAY (100,100)
DO 20 I = 1, 100

DO 10 J = 1, 100
ARRAY (J, I) = 3.0
ODNTINUE

ODNTINUE

is more efficient than accessing the array as ARRAY (I, = 3.0.

Fourth Edition

FORTRAN 77 Reference Guide

If the program can be designed efficiently without multidimensional
arrays, memory addressing can be more efficient. For more than one
dimension, this saves one multiply per effective address calculation;
i.e., number-of-multiplies = number-of-dimensions - 1. For instance,
the example above could be written as:

DIMENSION ARRAY (100,100)
DIMENSION INITARRAY (1)
EQUIVALENCE (ARRAY(1,1), INITARRAY(1))

DO 10 I = 1, 10000
INITARRAY(I) ' 3.0

10 CONTINUE

saving considerable CPU time.

Loading and Memory Allocation

Paging time can be significantly reduced by loading subprograms by
frequency of use (rather than, say, alphabetically). The main program
must always be loaded first for BIND to work properly.

A suitable loading scheme would allocate memory as:

MAIN

most common subroutines

occasionally used subroutines

infrequently used subroutines

In subroutine libraries, the top down tree structure must be preserved
if reset force load is in use.

Fourth Edition

OPTIMIZING F77 PROGRAMS

This ordering method may also be used to order CDMMDN blocks in memory
by frequency of use.

For more information on using BIND, see the Programmer's Guide to BIND
and EPFs.

Function Calls

When using function calls, eliminate
user-supplied functions. For example:

redundant invocations of

TEMP = FUNC(X)
A = TEMP * TEMP

is faster than:

A = FUNC(X) * FUNC(X)

Make sure that the function has no side effects which might modify the
argument (s) or anything else in the environment.

This practice is not necessary with intr insic functions unless
optimization of the program unit is prevented by the -NDjDETIMIZE
compiler option, because the F77 optimizer eliminates redundant
intr insic function calls.

Input/Output

Significant speed improvement in raw data transfers can be achieved by
using the equivalent IOCS or file system routine instead of formatted
input/output. (These routines are listed in the Subroutines Reference
Guide.) For example:

INTEGER TEXT (40)
READ (5, 20, END= 99) TEXT
20 FORMAT(40A2)

is slower than

INTEGER TEXT(40)
CALL RDASC(5, TEXT, 40, $99)

Fourth Edition

FORTRAN 77 Reference Guide

but the fastest yet is...

INTEGER TEXT(40), COLE
CALL RELIN$(1, TEXT, 40, CODE)

IF(00DE .NE. 0)* GOTO 99 /* Any error?
/* Yes, go process error

There are also routines for reading/writing octal, decimal, and
one-unit hexadecimal numbers from/to the terminal. For example,
CALL TIHEX(N) will read a hexadecimal integer from the terminal into
the short integer named N. For printing out text efficiently, use the
TNOU/TNOUA routines. See the Subroutines Reference Guide for more
specific information about these lower level routines.

Statement Sequence

The compiler can do register tracking, but cannot reorder statements.
For example, given the sequence:

A = B
X = Y
R = B

the generated code is:

LDA B
STA A
LDA Y
STA X
LDA B
STA R

(6 instructions long)

If the source is rearranged to:

A = B
R = B
X = Y

Fourth Edition

OPTIMIZING F77 PROGRAMS

the generated code is reduced to:

LEA B
STA A
STA R
LDA Y
STA X

(5 instructions long)

Parameter Statements

Initializing named constants via PARAMETER statements allows the
compiler to perform constant folding optimizations, resulting in faster
execution of statements using the named constants. The compiler does
not fold normal variables initialized by DATA statements into
constants.

Library Calls

Some applications library routines are not optimized for time critical
operations. The get and store character routines (GCHR$A, etc.) are
convenient, but comparatively slow. Some applications library routines
are by definition slow, because they use lower-level routines which can
more efficiently be called directly. Avoid using the MAX and MIN
functions when execution time must be minimized.

Applications library subroutines are designed to perform acceptably at
any task for which they might be called. When one particular task is
often required in a program, a user-supplied routine which is maximally
efficient at that one task can be substituted. See Chapter 8 and the
EXTERNAL Statement in Chapter 3.

Remember the 80/20 rule, which states: "80 percent of a program's time
is spent in 20 percent of the code." Therefore, standard library
routines are adequate in the non-time-critical 80 percent of the
program.

Integer Division

When dividing a non-negative integer by a power of two, use the RS
(right shift) binary intrinsic function. For example:

I = RS(J, 3)

Fourth Edition

EORTRAN 77 Reference Guide

Is much faster than:

I = J / 8

Compiler Options

The following compiler options allow your program to execute faster and
more efficiently:

• -OPTIMIZE

• -CLUSTER

• -TTiyE

• -DYNM

Use of the -OPTIMIZE Option: This option allows you the choice of the
following levels of optimization:

0: Perform no optimizations. Turns optimization off.

1: Code pattern replacement.

2: Common subexpression elimination. (This is the default value.)

3: Loop invariant removal.

4: Strength reduction of some common operations including indexing
of large arrays. Elimination of unreachable code.

Use of the -CLUSTER Option: When the -CLUSTER option is specified on
the command line for F77 in addition to optimization level 4, all the
subroutines in the file being compiled will become candidates to be
made quick.

Internally-nested procedures will be made quick, that is, called by a
Jump to Subroutine instruction rather than a Procedure call, if
conditions allow. The conditions under which a procedure will be made
quick are that it be called from only one place in your program. For
example, procedure C can be quick if it's called from procedure A.
However, if procedure C is also called from procedure B, where B is a
separate procedure from A, then C cannot be quick.

Fourth Edition

OPTIMIZING F77 PROGRAMS

Use of the TIME Option: This option specifies that time is to be given
preference over space in optimization consideration.
The -TIME option is the default.

Use of the -DYNM Option: Prime F77 programs run more efficiently when
local variables are placed in the stack through the use of the -DYNM
option (the default). These variables are not guaranteed to be valid
after a return.

Conclusion

These are some of the more common guidelines for programming in Prime
F77. If you keep these ideas in mind while writing, or while
"fine tuning" FORTRAN 77 programs, your programs will generally be
smaller and faster. Some of these rules are not necessarily permanent.
As Prime F77 evolves more optimizations, you will have more freedom to
choose procjramnung styles.

Generally it is easier to apply these techniques at initial coding
time, as opposed to going back and optimizing. While some of these
changes can be done easily with a few text editor commands, others may
require extensive changes to the source code.

Only specific techniques that can be described fairly briefly arementioned in this chapter. Many other examples of good programming
practice, and an excellent discussion of the more general aspects of
good programming, appear in the following text:

Kernighan and Plauger, The Elements of Programminc
McGraw-Hill, 1974

Fourth Edition

Prime Extended
Character Set

As of Revision 21.0, Prime has expanded its character set. The basic
character set remains the same as it was before Revision 21.0; it is
the ANSI ASCII 7-bit set, with the 8th bit always on. However, the 8th
bit is now significant; when it is turned off, i t signifies a
different character. Thus the size of the character set has doubled
from 128 characters to 256 characters. This expanded character set is
called the Prime Extended Character Set (Prime ECS).

The pre-Revision 21.0 character set is a proper subset of Prime ECS.
These characters have not changed. Sof tware wr i t ten before
Revison 21.0 continues to run exactly as it did before. Software
written at Revision 21.0 that does not use the new characters requires
no special coding to use the old ones.

Prime ECS support is automatic at Revison 21.0. You can begin to use
characters that have the 8th bit turned off. However, the extra
characters are not available on most printers and terminals. Check
with your System Administrator to find out whether you can take
advantage of the new characters in Prime ECS.

Tab le A -1 shows the P r ime Ex tended Charac te r Se t . The
pre-Revision 21.0 character set consists of the characters with decimal
values 128 through 255 (octal values 200 through 377). The characters
added at Revision 21.0 all have decimal values less than 128 (octal
values less than 200).

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

SPECIFYING PRIME ECS CHARACTERS

Direct Entry

On terminals that support Prime ECS, you can enter the printing
characters directly; the characters appear on the screen as you type
them. For information on how to do this, see the appropriate manual
for your terminal.

A terminal supports Prime ECS if

1. It uses ASQI-8 as its internal character set, and

2. The TTY8 protocol is configured on your asynchronous line.

If you do not know whether your terminal supports Prime ECS, ask your
System Administrator.
On terminals that do not support Prime ECS, you can enter any of the
ASCEI-7 printing characters (characters with a decimal value of 160 or
higher) directly by typing them.

Octal Notation

If you use the Editor (ED), you can enter any Prime ECS character by
typing:

"octal-value

where octal-value is the three-digit octal number given in Table A-1.
You must type all three digits, including leading zeroes.

Before you use this method to enter any of the ECS characters that have
decimal values between 32 and 127, first specify the following ED
command:

MOLE CKPAR

This command permits ED to print as "nnn any characters that have a
first bit of 0.

Fourth Edition, Update 2

PRIME EXTENDED CHARACTER SET

Character String Notation

You can specify Prime ECS characters on any terminal by using one of
the notations shown below. However, the characters themselves can only
appear on a terminal that supports Prime ECS. Other terminals will not
display the new characters correctly.

The following rules describe how to specify Prime ECS characters in
character strings.

1. You can specify printing characters in character strings by
enclosing them in single quotation marks (*). For example:

'Quoted string'

You can enter the characters using either direct entry or octal
notation as described in the beginning of this section.

2. You can specify any character in Prime ECS that has a mnemonic
as follows:

\ (mnemonic)

where mnemonic is the Prime mnemonic shown for that character
in Table ArTT You can specify the mnemonic with either
uppercase or lowercase characters. Some characters have more
than one mnemonic; you may use any one of these. In the
table, the alternatives are separated by a slash character (/).
For example:

'A string'\(FF) 'with a form feed in it'

The compiler interprets the above example as a single character
s t r i n g .

3. You can specify certain frequently used nonprinting characters
as

\ (abbrev ia t ion)

where abbreviation is one of the following:

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Abbreviat ion Meanin

Backspace
Escape
Form feed
Line feed
New line
Carriage return
Horizontal tab
Vertical tab

For example:

'A str ing'\F'with a form feed in it'

4. You can specify control characters as

Vcharac ter

where "character is listed under "Graphic" in Table A-1. For
example:

'A str ing'\"L'with a form feed in it'

A character specified with a backslash (that is, with notation 2, 3, or
4)

• Must appear outside quotation marks

• Specifies a character string of length 1

• Can be specified by itself, or with one or more additional
backslash-notation characters, or juxtaposed with one or more
quoted character strings.

Spaces between the Prime ECS character specification and the character
string are not significant, but there must be no spaces within the
character specification itself.

Program Example

The following program example writes a string that is specified by
Prime ECS syntax:

Fourth Edition, Update 2

PRIME EXTENDED CHARACTER SET

PROGRAM ECS_STRING

CHARACTER*12 STRING

STRING = \(CR) 'HELLO' \n 'THERE'

PRINT*, STRING

STOP
END

This program produces the following output

HELLO
THERE

♦*** STOP

SPECIAL MEANINGS OF PRIME ECS CHARACTERS

PRIMDS, or an applications program running on PRIMDS, may interpret
some Prime ECS characters in a special way. For example, PRIMDS
interprets "P as a process interrupt. ED, the Editor, interprets the
backslash (\) as a logical tab. If you wish to make use of the Prime
ECS backslash character in a file you are editing with ED, you must
define another character as your logical tab.

For a detailed description of how PRIMDS interprets the following Prime
ECS characters, see the discussion in the Prime User's Guide of special
terminal keys and special characters: \ " ? P S Q _ and ;.

F77 PROGRAMMING CONSIDERATIONS

Remember that identifiers and program names may contain only letters,
numbers, and the dollar sign and underscore characters ($ and _).
These characters form a subset of the ASCII-7 character set.

Character strings, however, can contain any character in Prime ECS.
Such strings can be declared as constants, written, read, or assigned
to CHARACTER variables.

You can use notations 2, 3, and 4, described above, in any quoted
string in your program. Thus, you can use these rules in constant
declarations, assignment, and write or print statements.

You cannot use notations 2, 3, and 4 in identifiers or in terminal or
file input. Therefore, if your terminal does not support Prime ECS,
you can enter as terminal input only those characters with decimal
values greater than 127 (octal values greater than 177).

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

The new characters in Prime ECS, decimal values 000 through 127 (octal
values 000 through 177) specif ied with notations 2, 3, and 4 above,
cannot be juxtaposed with Hollerith-style constants. They may not be
used in FORMAT statements, or used in runtime formats.

PRIME EXTENDED CHARACTER SET TABLE

Table A-1 contains all of the Prime ECS characters, arranged in
ascending order. This order provides both the collating sequence and
the way that comparisons are done for character strings. For each
character, the table includes the graphic, the mnemonic, the
description, and the binary, decimal, hexadecimal, and octal values. A
blank entry indicates that the particular item does not apply to this
character. The graphics for control characters are specified as
"character; for example, "P represents the character produced when you
type P while holding the control key down.

Characters with decimal values from 000 to 031 and from 128 to 159 are
control characters.

Characters with decimal values from 032 to 127 and from 160 to 255 are
graphic characters.

The pre-Revision 21.0 character set consists of the characters with
decimal values 128 through 255 (octal values 200 through 377). The
characters added at Revision 21.0 all have decimal values less than 128
(octal values less than 200).

Fourth Edition, Update 2

PRIME EXTENDED CHARACTER SET

Table A-1
Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

RES1 Reserved for future
standardization

0000 0000 000 00 000

RES2 Reserved for future
standardization

0000 0001 001 01 001

RES3 Reserved for future
standardization

0000 0010 002 02 002

RES4 Reserved for future
standardization

0000 0011 003 03 003

IND Index 0000 0100 004 04 004
NEL Next line 0000 0101 005 05 005
SSA Start of selected area 0000 0110 006 06 006
ESA End of selected area 0000 0111 007 07 007
HTS Horizontal tabulation set 00001000 008 08 010
HTJ Horizontal tab with

justify
00001001 009 09 011

VTS Vertical tabulation set 00001010 010 0A 012
PLD Partial line down 00001011 011 0B 013
PLU Partial line up 00001100 012 0C 014
Rl Reverse index 00001101 013 0D 015
SS2 Single shift 2 00001110 014 0E 016
SS3 Single shift 3 0000 1111 015 OF 017
DCS Device control string 0001 0000 016 10 020
PU1 Private use 1 0001 0001 017 11 021
PU2 Private use 2 0001 0010 018 12 022
STS Set transmission state 00010011 019 13 023
CCH Cancel character 00010100 020 14 024
MW Message waiting 00010101 021 15 025
SPA Start of protected area 0001 0110 022 16 026
EPA End of protected area 0001 0111 023 17 027
RES5 Reserved for future

standardization
0001 1000 024 18 030

RES6 Reserved for future
standardization

0001 1001 025 19 031

! R E S 7 Reserved for future
standardization

0001 1010 026 1A 032

CSI Control sequence
introducer

0001 1011 027 1B 033

ST String terminator 0001 1100 028 1C 034
OSC Operating system

command
0001 1101 029 1D 035

PM Privacy message 0001 1110 030 1E 036

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Table A-1 (Continued)
Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

APC Application program
command

0001 1111 031 1F 037

NBSP No-break space 0010 0000 032 20 040
i I N V E Inverted exclamation

mark
0010 0001 033 21 041

1 * C E N T Cent sign 0010 0010 034 22 042
£ P N D Pound sign 0010 0011 035 23 043
a C U R R Currency sign 0010 0100 036 24 044
¥ Y E N Yen sign 0010 0101 037 25 045
! B B A R Broken bar 00100110 038 26 046
§ S E C T Section sign 0010 0111 039 27 047

DIA Diaeresis, umlaut 00101000 040 28 050
© C O P Y Copyright sign 00101001 041 29 051

! § F O I Feminine ordinal
indicator

00101010 042 2A 052

« L A Q M Left angle quotation
mark

00101011 043 2B 053

- i N O T Not sign 00101100 044 2C 054
1 S H Y Soft hyphen 00101101 045 2D 055

® T M Registered trademark
sign

00101110 046 2E 056

MACN Macron 00101111 047 2F 057
DEGR Degree sign 0011 0000 048 30 060

± P L M I Plus/minus sign 00110001 049 31 061
SPS2 Superscript two 00110010 050 32 062
SPS3 Superscript three 00110011 051 33 063
AAC Acute accent 00110100 052 34 064

u L C M U Lowercase Greek letter
u, micro sign

0011 0101 053 35 065

1 P A R A Paragraph sign, Pilgrow
sign

0011 0110 054 36 066

MIDD Middle dot 00110111 055 37 067
A C E D Cedilla 0011 1000 056 38 070

SPS1 Superscript one 0011 1001 057 39 071
o M O I Masculine ordinal

indicator
0011 1010 058 3A 072

» R A Q M Right angle quotation
mark

0011 1011 059 3B 073

Va F R 1 4 Common fraction
one-quarter

0011 1100 060 3C 074

Fourth Edition, Update 2

PRIME EXTENDED CHARACTER SET

Table A-1 (Continued)
Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

1/2 FR12 Common fraction
one-half

0011 1101 061 3D 075

3/4

6
A

FR34

INVQ
UCAG

Common fraction
three-quarters
Inverted question mark
Uppercase A with grave
accent

0011 1110

0011 1111
0100 0000

062

063
064

3E

3F
40

076

077
100

A UCAA Uppercase A with acute
accent

0100 0001 065 41 101

A UCAC Uppercase A with
circumflex

0100 0010 066 42 102

A
A

UCAT
UCAD

Uppercase A with tilde
Uppercase A with
diaeresis

0100 0011
0100 0100

067
068

43
44

103
104

A UCAR Uppercase A with ring
above

01000101 069 45 105

/E UCAE Uppercase diphthong 0100 0110 070 46 106

9 UCCC Uppercase C with
cedilla

0100 0111 071 47 107

I E UCEG Uppercase E with grave
accent

01001000 072 48 110

E UCEA Uppercase E with acute
accent

01001001 073 49 111

1 UCEC Uppercase E with
circumflex

01001010 074 4A 112

E UCED Uppercase E with
diaeresis

01001011 075 4B 113

I UCIG Uppercase I with grave
accent

01001100 076 4C 114

I UCIA Uppercase I with acute
accent

01001101 077 4D 115

I UCIC Uppercase I with
circumflex

01001110 078 4E 116

i UCID Uppercase I with
diaeresis

01001111 079 4F 117

I I UETH Uppercase Icelandic
letter Eth

0101 0000 080 50 120

N
6

UCNT
UCOG

Uppercase N with tilde
Uppercase 0 with grave
accent

0101 0001
0101 0010

081
082

51
52

121
122

6 UCOA Uppercase 0 with acute
accent

0101 0011 083 53 123

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Table A-1 (Continued)
Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

0 UCOC Uppercase O with
circumflex

0101 0100 084 54 124

6 UCOT Uppercase O with tilde 01010101 085 55 125
6 UCOD Uppercase 0 with

diaeresis
01010110 086 56 126

X MULT Multiplication sign used
in mathematics

01010111 087 57 127

0 UCOO Uppercase 0 with
oblique line

0101 1000 088 58 130

U UCUG Uppercase U with grave
accent

0101 1001 089 59 131

U UCUA Uppercase U with acute
accent

0101 1010 090 5A 132

U UCUC Uppercase U with
circumflex

0101 1011 091 5B 133

0 UCUD Uppercase U with
diaeresis

0101 1100 092 5C 134

Y UCYA Uppercase Y with acute
accent

0101 1101 093 5D 135

I> UTHN Uppercase Icelandic
letter Thorn

0101 1110 094 5E 136

fl LGSS Lowercase German
letter double s

0101 1111 095 5F 137
Na LCAG Lowercase a with grave

accent
0110 0000 096 60 140

a LCAA Lowercase a with acute
accent

0110 0001 097 61 141

a LCAC Lowercase a with
circumflex

01100010 098 62 142

a LCAT Lowercase a with tilde 0110 0011 099 63 143
a LCAD Lowercase a with

diaeresis
01100100 100 64 144

i oa LCAR Lowercase a with ring
above

01100101 101 65 145

se LCAE Lowercase diphthong ae 01100110 102 66 146
5 LCCC Lowercase c with cedilla 01100111 103 67 147
e LCEG Lowercase e with grave

accent
01101000 104 68 150

e LCEA Lowercase e with acute
accent

01101001 105 69 151

e LCEC Lowercase e with
circumflex

01101010 106 6A 152

Fourth Edition, Update 2

PRIME EXTENDED CHARACTER SET

Table A-1 (Continued)
Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

e LCED Lowercase e with
diaeresis

01101011 107 6B 153

1 LCIG Lowercase i with grave
accent

01101100 108 6C 154

i LCIA Lowercase i with acute
accent

01101101 109 6D 155

i LCIC Lowercase i with
circumflex

01101110 110 6E 156

T LCID Lowercase i with
diaeresis

01101111 111 6F 157

a LETH Lowercase Icelandic
letter Eth

0111 0000 112 70 160

n LCNT Lowercase n with tilde 0111 0001 113 71 161
0 LCOG Lowercase o with grave

accent
0111 0010 114 72 162

0 LCOA Lowercase o with acute
accent

0111 0011 115 73 163

6 LCOC Lowercase o with
circumflex

01110100 116 74 164

6
! o

LCOT
LCOD

Lowercase o with tilde
Lowercase o with
diaeresis

0111 0101
0111 0110

117
118

75
76

165
166

- r DIV Division sign used in
mathematics

0111 0111 119 77 167

0

U

LCOO

LCUG

Lowercase o with
oblique line
Lowercase u with grave
accent

0111 1000

0111 1001

120

121

78

79

170

171

1 U LCUA Lowercase u with acute
accent

0111 1010 122 7A 172

U LCUC Lowercase u with
circumflex

0111 1011 123 7B 173

ii LCUD Lowercase u with
diaeresis

0111 1100 124 7C 174

y LCYA Lowercase y with acute
accent

01111101 125 7D 175

i> LTHN Lowercase Icelandic
letter Thorn

0111 1110 126 7E 176

y LCYD Lowercase y with
diaeresis

0111 1111 127 7F 177

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Table A-1 (Continued)
Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

NUL Null 1000 0000 1 2 8 IJO 200
AA SOH/TC1 Start of heading 1000 0001 1 2 9 I31 201
AB STX7TC2 Start of text 1000 0010 1 3 0 I52 202
AC ETX7TC3 End of text 1000 0011 1 3 1 I33 203
AD EOTH"C4 End of transmission 1000 0100 1 3 2 I14 204
AE ENQH"C5 Enquiry 1000 0101 1 3 3 I55 205
AF ACK/TC6 Acknowledge 1000 0110 1 3 4 t36 206
AG BEL Bell 1000 0111 1 3 5 I37 207
AH BS/FEO Backspace 10001000 1 3 6 I38 210
Al HT/FE1 Horizontal tab 10001001 1 3 7 v39 211
AJ LF/NL/FE2 Line feed 10001010 1 3 8 8 A 212
AK VT/FE3 Vertical tab 10001011 1 3 9 8 B 213
AL FF/FE4 Form feed 10001100 1 4 0 8 C 214
AM CR/FE5 Carriage return 10001101 1 4 1 8 D 215
AN SO/LS1 Shift out 10001110 1 4 2 8 E 216
A0 SI/LSO Shift in 10001111 1 4 3 £3F 217
AP DLE/TC7 Data link escape 10010000 1 4 4 £)0 220
AQ DC1/XON Device control 1 10010001 1 4 5 £M 221
AR DC2 Device control 2 10010010 1 4 6 £)2 222
AS DC3/XOFF Device control 3 10010011 1 4 7 £)3 223
AT DC4 Device control 4 1001 0100 1 4 8 £)4 224
AU NAK/TC8 Negative acknowledge 1001 0101 1 4 9 £)5 225
AV SYNfi"C9 Synchronous idle 1001 0110 1 5 0 £)6 226
AW ETB/TC10 End of transmission

block
1001 0111 1 5 1 £)7 227

AX CAN Cancel 1001 1000 1 5 2 £)8 230
AY EM End of medium 1001 1001 1 5 3 £)9 231
AZ SUB Substitute 1001 1010 154 9 A 232
1 ESC Escape 1001 1011 1 5 5 9 B 233
A\ FS/IS4 File separator 1001 1100 1 5 6 9 C 234
1 GS/IS3 Group separator 1001 1101 1 5 7 9 D 235
A A RS/IS2 Record separator 1001 1110 1 5 8 9 E 236
A US/IS1 Unit separator 1001 1111 1 5 9 £)F 237

SP Space 1010 0000 1 6 0 A 0 240
! Exclamation mark 1010 0001 1 6 1 >\1 241
11 Quotation mark 10100010 1 6 2 A 2 242
NUMB Number sign 10100011 1 6 3 A 3 243
$ DOLR Dollar sign 10100100 1 6 4 A 4 244
% Percent sign 10100101 1 6 5 A 5 245
& Ampersand 10100110 1 6 6 A 6 246

Fourth Edition, Update 2

PRIME EXTENDED CHARACTER SET

Table A-1 (Continued)
Prime Extended Character Set

Graphic M n e m o n i c D e s c r i p t i o n Binary Decimal Hex Octal

/ Apostrophe 10100111 167 A7 247
(Left parenthesis 10101000 168 A8 250
) Right parenthesis 10101001 169 A9 251
* Asterisk 10101010 170 AA 252
+ Plus sign 10101011 171 AB 253
» Comma 10101100 172 AC 254
- Minus sign 10101101 173 AD 255
. Period 10101110 174 AE 256
/ Slash 10101111 175 AF 257
0 Zero 1011 0000 176 BO 260

| 1 One 10110001 177 B1 261
2 Two 10110010 178 B2 262
3 Three 10110011 179 B3 263
4 Four 1011 0100 180 B4 264
5 Five 10110101 181 B5 265
6 Six 10110110 182 B6 266
7 Seven 10110111 183 B7 267
8 Eight 1011 1000 184 B8 270
9 Nine 1011 1001 185 B9 271
; Colon 1011 1010 186 BA 272
i Semicolon 1011 1011 187 BB 273
< Less than sign 1011 1100 188 BC 274
= Equal sign 1011 1101 189 BD 275
> Greater than sign 1011 1110 190 BE 276
? Question mark 1011 1111 191 BF 277
@ AT Commercia l at s ign 1100 0000 192 CO 300
A Uppercase A 1100 0001 193 C1 301
B Uppercase B 1100 0010 194 C2 302
C Uppercase C 1100 0011 195 C3 303
D Uppercase D 1100 0100 196 C4 304
E Uppercase E 1100 0101 197 C5 305
F Uppercase F 1100 0110 198 C6 306
G Uppercase G 1100 0111 199 C7 307
H Uppercase H 11001000 200 C8 310
I Uppercase I 1100 1001 201 C9 311

j J Uppercase J 11001010 202 CA 312
K Uppercase K 11001011 203 CB 313
L Uppercase L 11001100 204 CC 314
M Uppercase M 11001101 205 CD 315
N Uppercase N 11001110 206 CE 316

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Table A-1 (Continued)
Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

Uppercase O
Uppercase P
Uppercase Q
Uppercase R
Uppercase S
Uppercase T
Uppercase U
Uppercase V
Uppercase W
Uppercase X
Uppercase Y
Uppercase Z

LBKT Left bracket
REVS Reverse slash,

backslash
RBKT Right bracket
C F L X C i r c u m fl e x

Underline, underscore
GRAV Left single quote, grave

accent
Lowercase a
Lowercase b
Lowercase c
Lowercase d
Lowercase e
Lowercase f
Lowercase g
Lowercase h
Lowercase i
Lowercase j
Lowercase k
Lowercase I
Lowercase m
Lowercase n
Lowercase o
Lowercase p
Lowercase q
Lowercase r
Lowercase s

11100100 228 E4 344
11100101 229 E5 345
11100110 230 E6 346
11100111 231 E7 347
11101000 232 E8 350
11101001 233 E9 351
11101010 234 EA 352
11101011 235 EB 353
11101100 236 EC 354
11101101 237 ED 355
11101110 238 EE 356
11101111 239 EF 357
1111 0000 240 FO 360
1111 0001 241 F1 361
1111 0010 242 F2 362
1111 0011 243 F3 363
1111 0100 244 F4 364

Fourth Edition, Update 2

PRIME EXTENDED CHARACTER SET

Table A-1 (Continued)
Prime Extended Character Set

Mnemonic Description Binary Decimal Hex Octa

Lowercase u 11110101 245 F5 365
Lowercase v 11110110 246 F6 366
Lowercase w 1111 0111 247 F7 367
Lowercase x 1111 1000 248 F8 370
Lowercase y 1111 1001 249 F9 371
Lowercase z 1111 1010 250 FA 372

LBCE Left brace 1111 1011 251 FB 373
VERT Vertical line 1111 1100 252 FC 374
RBCE Right brace 1111 1101 253 FD 375
TIL Tilde 1111 1110 254 FE 376
DEL Delete 11111111 255 FF 377

Fourth Edition, Update 2

F77 Programming
Examples

SAMELE PROGRAM #1

SOURCE FILE: <EUPS>D0GS>SAMELE1.F77
COMPILED ON: 850212 AT: 14:01 BY: F77 REV. 19.4
Options selected: SAMPLE -LISTING

•-FulUDETimize" means "-OPTimize 4", and default is "-OPTimize 2".
Options used(* follows those that are not default):

64V Allow_PREconnection No_BIG Binary No_DClvar No_DeBuG No_D01 DYnm
No_ERRList ERRTty No_EXPlist No_FRN No_FTEN_Entry INTL Listing* IOGL MAp
No_OFFset OPTimize(2) No_OverFlow No_IBECB No_PRODuction No_RAnge
Silent (-1) TIME No_£TATistics No_Store_Owner_Field UPcase No_XRef

PROGRAM DEMD /*PROGRAM STATEMENT*/

* *
* *
* SAMPLE PROGRAM TO DEMDN&ERATE THE VARIOUS FEATURES OF *
* FORTRAN 77, AND A TYPICAL F77 COMPILER SOURCE LISTBJ3. *

* *
C
C
C***** PARAMETER STATEMENTS
C

INTEGER ONE, FOUR,TEN,EORTY /* DCL TYPE BEFORE USE */

Fourth Edition

EORTRAN 77 Reference Guide

PARAMETER ONE = 1,
* F O U R = 4 ,
* T E N = 1 0 ,
* E O R T Y = T E N * F O U R /* NOTE USE OF EXPRESSION */

C***** rjjjE CHARACTER DATA TYPE IS NEW TO FORTRAN 77.
C

CHARACTER*4 FILE
CHARACTER*12 FNAJE, EORM*8
CHARACTER*80 BUFFER /*DEETNE INHJT
DIMENSION INJ\RRAY(80) /* DEFINE INTEGE

/*DEETNE INHJT BUFFER*/
/* DEFINE INTEGER ARRAY*/

C***** ARRAY DCL'S, USING DOWER BOUNDS AND 7 DIMENSIONS
C

DIMENSION A(-5:5, 6, 0:9)
DIMENSION B(l, 2, 3, 4, 5, 6, 7)
CHARACTER C(0:FOUR, TEN)*5 /* CHAR ARRAYS ALLOWED */

/* NOTE USE OF PARAMETERS */

C***** LOGICAL VARIABLES - N3TE *1, *2 AND *4 FO
C***** THESE ARE NOT FORTRAN 77, BUT ARE SUPPORTED
C***** COMPATIBILITY WITH '
c***** jn A frjYlE ST
r j * * * * *
r j * * * * *
C

iEslv<{^MvT,8^N^r4vy4w^Wtpy;W^y^H^)^
kMmHwugq

LOGICAL EXISTS, OEM)
LOGICAL*l LOGI

ICAL*2 IOG2/.TMJE./, LOG2B
ICAL*4 D0GICALEOUR /* UP TO 32 CHAR NAMES */

C***** G0MHiEX*16- IS NOT EORTRAN 77, BUT IS AN EXTENSION FOR
C***** COMPATIBILITY WITH IBM EORTRAN.
C

<DMPL.EX*16; DODMPVAR
C
C***** USE OF DOUBLE PRECISION TYPE DECLARATION.
C

DOUBLE ERECISION Dl, D2, D3, D4
C
C***** EXTERNAL STATEMENT USED TO INSURE THAT AN EXTERNAL
C***** FUNCTION WILL BE USED INSTEAD OF THE INTRINSIC.
C***** jt (TjrjLD ALSO BE USED TO INSURE THAT ANY FUNCTION
C***** USED WILL NDT BE MISINTERPRETED AS AN INTRINSIC EVEN
C***** THOUGH SOME VENDOR MAY HAVE ADEED A FUNCTION OF THAT
C***** NAME TO THE LIST OF INTRINSICS, ENHANCING PORTABILITY.
C

EXTERNAL IFIX
C
C***** BEGINNING OF EXECUTABLE (DIE. THE PURPOSE OF THIS
C***** RCUTINE IS TO OPEN SOME FILES, AND THEN CHECK
C***** Tg^rj, rjflg F1LES were CORRECTLY OPENED. THIS DEMDN-
C***** STRATES SOME OF THE NEW I/O FEATURES OF EORTRAN 77.
C

Fourth Edition

F77 EK0GRAMMIN3 EXAMPLES

FILE = 'FILE' /* ASSIGN ASCII STRIN3 TO CHAR VAR */
SOME_NUMBER =64.2

C
C***** THIS IS THE MAIN LOOP
C

DO 10 1=1,SQRT (SOME_NUMBER)*8 /* REAL EXPR FOR DO PARM
FNAME = FILE//CHAR(I) /* CHAR CONCATENATION */

C
C***** NEW OPEN STATEMENT WITH KEYWORDS.
C

OEEN (FILE = FNAME,
* UN IT = I ,
* STATUS = 'UNKNCWN* ,
* ACCESS = 'SEQUENTIAL',
* ERR = 100)

C
C***** NEW INQUIRE STATEMENT
C

INQUIRE (UNIT = I,
* E X I S T = E X I S T S ,
* OEENED = OPND,
* NAME = C(I+1,4), /* EXPRESSION IN ARRAY REF */
* E R R = 1 0 1)

C
C***** AN EXAMELE OF A BLOCK IF-THEN-ELSE
C

IF (EXISTS .AND. OPND) THEN
WRITE (1,*) FNAME, ' EXISTS AND IS OEENED'

/* LIST DIRECTED I/O WITH */
/* CHAR CONSTANT */

ELSE
PRINT *, FNAME, ' MOT OEENED, W ERROR RAISED'

/* NEW PRINT STATEMENT */
END IF

10 CONTINUE
GO TO 1000

C
C***** END OF M1AIN LOOP. ERROR ROUTINES POLICW.
C
100 WRITE (1, ' (A, A, A, 13) ') 'ERROR CN OPEN OF ', FNAME,

* 'CN UNIT ', I
/* FORMAT EMBEDEED IN I/O STMT */

STOP 'ERROR'
101 CONTINUE

FORM = * (A , 13) ' / * DEFINE FORMAT * /
WRITE (1, EORM) 'ERROR ON INQUIRE ON UNIT ',1

/* CHAR VAR REPRESENTS FORMAT */

Fourth Edition

EORTRAN 77 Reference Guide

STOP 'ERROR'

1000 INT_RANDOM = IFIX(3.1) /* USE EXTERNAL FUNCTION
C
C***** iHIS NEXT CALL DEMONSTRATES THE ALTERNATE RETURN.
C

CALL ALTRET (I, $5001, $5002)
INT_RANDOM = 0
GO TO 6000

5 0 0 1 C O N T I N U E / * A L T R E T U R N # 1
GO TO 6000

5 0 0 2 O D N T I N U E / * A L T R E T U R N # 2
INTLRANDOM = 2

C***** ANOTHER EXAMILE OF THE BLOCK-IF, BUT WITH MULTIPLE
C***** BRANCHES. ALSO, MULTIPLE ENTRY POINTS OF THE
C***** SUBROUTINE M1JLTIN ARE USED.
C

6000 IF (INT_RANDOM .EQ. 0) THEN
CALL MDLTIN (I, INT__RRNDOM)

ELSE IF (INTJ&NDOM .EQ. 1) THEN
CALL MULT1 (I)

ELSE IF (INTLRANDOM .EQ. 2) THEN
CALL MULT2 (INT_RANDOM)

ELSE

C
Q * * * * *
f j * * * * *
r j * * * * *
r j * * * * *
r j * * * * *
C

C
r j * * * * *

INTJ&NDOM = 1
END IF

NEXT IS AN EXAMILE OF INTERNAL FILES. FIRST, READ AN
80 CHAR RECORD INTO BUFFER. ASSUMING IT IS ALL
NUMBERS, IT C£N BE 'READ' INTERNALLY INTO ANOTHER
INTEGER VARIABLE. INTERNAL FILES HAVE THE SAME
FUNCTIONALITY AS ENCODE/DECODE.

READ (5, »(A80)1) BUFFER
READ (UNIT=BUFEER, EMT='(8011)') Hq_ARRAY

THIS IS AN EXAMILE OF GENERIC TYPING OF INTRINSICS.

Fourth Edition

F77 PROGRAMMING EXAMPLES

C***** IT IS NO LONGER NECESSARY TO USE DIFFERENT EUNCTION
C***** NAMES EOR THE SAME EUNCTION FOR DIFFERENT DATA TYPES.
C

DI = 2.2 /* DEFINE DOUBLE PREC VARS */
D2 = 3.6
D3 = 4.9
D4 = DI + D2 + D3
S I N G L E = 3 1 . 3 1 3 4 / * S I N 3 L E P R E C * /
SINGLE=SQRT(DI) /ABS(D2) +SQRT (D3) *SQRT (D4) /SQRT(D_SIN3LE)
END

EXTERNAL ENTRY POINTS

ENTRY POINT PROGRAM UNIT

ENTRY

MAIN PROGRAM DEM© ON LINE 1

SYMBOLIC STORAGE SIZE LOC ATTRIBUTES
NAME

10

CLASS

CONSTANT

(DEC) (OCT)

EXECUTABLE LABEL LINE 102
100 CONSTANT EXECUTABLE LABEL LINE 107
1000 CONSTANT EXECUTABLE LABEL LINE 117
101 CONSTANT EXECUTABLE LABEL LINE 111
5001
5002

CONSTANT
CONSTANT

EXECUTABLE LABEL LINE 124
EXECUTABLE LABEL LINE 126

6000 O0NST2OT EXECUTABLE LABEL LINE 133
A DYNAMIC 1320H 000054 REAL*4 DIMENSK)N(-5:5 6,0:9)
ABS INTRINSIC
ALTEET CONSTANT SUBROUTINE
B
T V

DYNAMIC 10080H 002524 REAL*4 DIMENSION(1,2,3,4,5,6,
7)
BUFFER DYNAMIC 80C 026264 CHARACTER*80
C DYNAM4IC 250C 026334 CHARACTER*5 DIMENSION(0:4,10)
CHAR INTRINSIC
DI DYNAMIC 4H 026532 REAL*8
D2 DYNAMIC 4H 026536 REAL*8
D3 DYNAMIC 4H 026542 REAL*8
D4 DYNAMIC 4H 026546 REAL*8

Fourth Edition

FORTRAN 77 Reference Guide

DCOMEVAR DYNAMIC
D_SINGLE DYNAM4IC
EXISTS DYNAMIC
FILE DYNAMIC
FNAME DYNAM1IC
FORM DYNAM4IC
EORTY
FOUR
CONSTANT 4
I DYNAMIC
I F I X CONSTANT
JNTLRANDOM DYNAMIC
BLARRAY DYNAMIC
LOGI DYNAMIC
EOG2 STATIC
IOG2B DYMJAMIC
LOGICALFOUR DYNAM1IC
MULT1 CONSTANT
MULT2 CONSTANT
MULTIN CONSTANT
ONE
OPND DYNAMIC
SINGLE DYNAMIC
SOME_NUMBER DYNAMIC
SQRT INTRINSIC
TEN
CONSTANT 10

026552
026562

160H

026564 L0GICAL*4
026566 CHARACTER^
026570 CHARACTER*12
026576 CHARACTER*8

INTEGER*4 NAMED CONSTANT 40
INTBGER*4 NAMED

026602 INTEGER*4
MTEGER*4 FUNCTION

026604 INTEGER*4
026606 INTEGER*4 DIMENSION(80)
027046 IOGICAL*l
000030 INITIAL LOGICAL*2
000053 IOGICAL*2
027050 L0GICAL*4

SUBROUTINE
SUBROUTINE
SUBROUTINE
INTEGER*4 NAMED CONSTANT 1

027052 D0GICAL*4
027054 REAL*4
027056 nwmlm ^^^^^^^^^H

NAMED

Fourth Edition

F77 PR0GRAMMIN3 EXAMPLES

* *
* *
* THIS IS AN EXTERNAL FUNCTION OF THE SAME NAME AS THE *
* INTRINSIC IFIX, AND DOES THE SAME THINS, SO AS TO *
* DEMONSTRATE THAT BY USBG THE EXTERNAL STATEMENT ONE *
* SUBSTITUTE ONE'S OWN VERSION OF A FUNCTION. *
* *
* *

INTEGER EUNCTION IFIX(RVAR)
IFIX = RVAR
RETURN
END

EXTERNAL ENTRY POINTS

ENTRY POINT PROGRAM UNIT LINE

FUNCTION IFIX ON LINE 175

SYMBOLIC
NAME

STORAGE
CLASS

SIZE LOC
(DEC) (OCT)

ATTRIBUTES

RVAR DUMMY ARG EOS 1 REAL*4

Fourth Edition

EORTRAN 77 Reference Guide

* THIS SUBROUTINE DEMDNSTATES ALTERNATE RETURNS.
*
* *
c

SUBROUTINE ALTRET (I, *,
RETURN I /* IF I = 1, RETURNS TO 5001 */

/* IF I = 2, RETURNS TO 5002 */
/* OTHERWISE, RETURNS NORMALLY */

EXTERNAL ENTRY POINTS

ENTRY POINT PROGRAM UNIT LINE

ALTRET SUBROUTINE

SUBROUTINE ALTRET ON LINE 188

SYMBOLIC
NAME

STORAGE
CLASS

SIZE LOC
(DEC) (OCT)

ATTRIBUTES

DUMMY ARG EOS 1

Fourth Edition

F77 PROGRAMMING EXAMELES

* *
* *
* THIS SUBROUTINE IS AN EXAMPLE OF A SUBROUTINE WITH
* M U L T I P L E E N T R Y P O I N T S . *
* *
* *

SUBROUTINE MULTIN (I, INT_RANDOM)
C

1 = 0
INTLRANDOM = 13
RETURN

C
c***** SECONDARY ENTRY POINT. NOTE THAT THE ARG LIST NEED
C***** NOT MATCH THAT AT THE HEADER STATEMENT.
C

ENTRY MULTL (I)
I = 15
RETURN

C
c***** next ENTRY POINT
C

ENTRY MULT2 (INT_RANDOM)
INTLRANDOM = INT_RAlSrDOM**2
RETURN
END

EXTERNAL ENTRY POINTS

ENTRY POINT PROGRAM UNIT

MulLTl MULTIN
MULT2 MULTIN
MIJLTTN

LINE

SUBROUTINE
SUBROUTINE
SUBROUTINE

SUBROUTINE MULTIN CN LINE 203

SYMBOLIC STORAGE SIZE LOC ATTRIBUTES
NAPE CLASS (DEC) (OCT)

I DUMMY ARG 2H EOS 1 H$ili5©#'^
INT RANDOM DUMMY ARG 2H - V- M^^W^M^

Fourth Edition

FORTRAN 77 Reference Guide

SAMILE PROGRAM #2

SOURCE FILE: <PUPS>D0GS>SAM1PLE2.F77
OOMIPTLED ON: 850212 AT: 14:01 BY: F77 REV. 19.4
Options selected: SAMPLE2 -LISTING
Optimization note: Currently "-OPTimize" means "-OPTimize 2",

"-Full_OPTimize" means "-OPTimize 4", and default is "-OPTimize 2".
Options used(* follows those that are not default):

64V Allow_PREconnection No_BIG Binary No_DClvar No_DeBuG NO_D01 DYnm
No_ERRList ERRTty No_EXPlist No_FRN No_FTN_Entry INTL Listing* LOGL MAp
NojDFFset OPTimize (2) No_OverFlow No_PBECB No_PRODuction No_RAnge
Silent (-1) TIME No_STATistics No_Store_Owner_Field UPcase No_XRef

.y.T.T.TJT.TT,-

* THIS SAMILE PROGRAM DEMONSTRATES THE USE OF QUAD FLOATED *
* POINT ARITHMETIC, A NEW PRIME FEATURE. PROGRAMS THAT USE *
* REAL*16 DATA TYPE CAN ONLY BE EXECUTED ON PRIME MACHINES *
* THAT SUPPORT QUAD PRECISION (REV. 19.2 AND HIGHER). *
* *
* THE SUBPROGRAM EXAMINES 3 REAL VALUES PASSED FROM THE *
* MAIN PROGRAM AND RETURNS THAT VALUE WHICH HAS THE LARGEST *
* A B S O L U T E V A L U E . *
* *
* *
C
C***** USE OF QUAD PRECISION TYPE DECLARATION
C

REAL*16 QL, Q2, Q3

Ql = 4.2Q1
Q2 = 2.33Q2
Q3 = 6.9Q0

/* DEFINE REAL*16 VARS

READ*, Ql, Q2, Q3

LL BIG(QL,
tINT*, ANS

wswraaEH //'*■■ (sm&f'i ■ '•'5j ®■UwiM«:i(ei

Fourth Edition

F77 PROGRAMMING EXAMPLES

EXTERNAL ENTRY POINTS

E N T R Y P O I N T P R O G R A M U N I T L I N E T Y P E

.MAIN.

MAIN IROGRAM .MAIN. CN LINE 18

S Y M B O L I C S T O R A G E S I Z E L O C A T T R I B U T E S
NAME C L A S S (D E C) (O C T)

ANS D Y N A M C 2 H 0 0 0 0 5 4 R E A L * 4
BIG C O N S T A N T S U B R O U T I N E

| » M D Y N A M C 8H 0 0 0 0 5 6 R E A L * 1 6
ws/m D Y N A M I C 8H 0 0 0 0 6 6 R E A L * 1 6
Q3
C

D Y N A M I C 8H 0 0 0 0 7 6 R E A L * 1 6

29
30 *
31
32 * THE SUBROUTINE BIG USES THE INTRINSIC EUNCTION QABS TO
33 * FIND WHICH VALUE HAS THE LARGEST MAGNITUDE AND RETURNS
34 * THE RESULT TO THE MAIN PROGRAM.
35 ■ 9
36 *SB
37
38 SUBROUTINE BIG(X, Y, Z, BIQABS)
39 REAL*16 X, Y, Z, BIGABS
40 IF (QABS(X).GT.QABS(Y)) THEN
41 IF (QABS(X).GT. (Z)) THEN
42 BIQABS = X
43 ELSE
44 BIQABS = Z
45 END IF
46 ELSE
47 IF (QABS(Y).GT.QABS(Z)) THEN
48 BIQABS = Y
49 ELSE
5
5

0
1

BIQABS = Z
END IF

52 END IF
^■•K^H L°i&tiJ3c^B'

Ho^i iH

Fourth Edition

Converting FTN
Programs to F77

The techniques required for converting FTN programs to F77 are
described in this appendix.

The simplicity of converting FTN programs to F77 results from two
factors:

• The designers of FTN used preliminary documents released by ANSI
during the development of FORTRAN 77. The information in these
documents was used to make FTN's extensions to FORTRAN 66
identical to those of the future EORTRAN 77 wherever this could
be accomplished without violating the EORTRAN 66 standard.

• F77 includes all FTN constructs, except the obsolete TRACE
statement, that are absent from but compatible with EORTRAN 77.

The result is that many ETN program units can be compiled in F77 with
no changes. Mfost of the other programs can be converted with only
minor changes.

The program unit which cannot easily be converted to F77 can usually be
left in ETN form and called by other units that are written in F77.
See USING AN FTN PROGRAM UNIT IN AN F77 PROGRAM.

Fourth Edition

EORTRAN 77 Reference Guide

PROGRAM CONVERSION

Any project converting FTN programs to F77 should have available:

• This guide

• The Prime User's Guide

The FORTRAN Reference Guide

The ANSI Standard for FORTRAN 77

Conversion of a program to F77 need not be an all or none process. Due
to the similarity of FTN and F77, each unit of an FTN program can be
dealt with separately when the program as a whole is converted.

The first step in converting an FTN program unit to F77 is to compile
it in F77 and see what, if any, error messages result. Due to the
detailed and prescriptive information given by an F77 error message,
the messages produced should give an assessement of the changes needed.

The second step is to check the FTN program unit for constructs that
are common to and syntactically the same in ETN and F77, and therefore
generate no syntax errors, but which have different requirements or
results in the two languages due to differences between the ANSI
standards. Such constructs are called "optionally acceptable FTN
constructs" and "reimplemented FTN constructs." These terms are
defined, and all such constructs are described, under PRODUCING PN
F77-CDMffiATIBLE PROGRAM UNIT.

The first and/or second steps should be iterated until the program unit
compiles correctly with all optionally acceptable and reimplemented
constructs dealt with as necessary.

The third step is a thorough check of the converted program unit.
Before it is accepted as correct, it should pass the same tests it was
required to pass before being accepted in its original version.

Caution

The fact that a program unit compiles without error in F77 does
not mean it will produce the same results in F77 that it did in
ETN. Identical results can be achieved only if all optionally
acceptable and reimplemented constructs have been correctly
dealt with.

CONVERTING ETN PROGRAMS TO F77

DEGREES OF PROGRAM UNIT CONVERSION

Conversion of a program unit to F77 is not an all or none matter.
Three degrees of conversion of an FTN program unit can be
dist inguished:

• The unit may be left in FTN, but may reference and be called by
other units that are in F77. This conversion is contextual.
The unit per se remains an FTN program unit.

• The unit may be recompiled in F77, but retain certain optionally
acceptable ETN constructs that violate the EORTRAN 77 standard.
The F77 compiler will compile them correctly only if it is
invoked with appropriate options, as described below. A program
unit of this type is termed an F77-compatible program unit.

• The unit may be completely converted to standard-conforming F77.
It is then termed an F77-standard program unit.

There is no need for all units of a converted program to be converted
to the same degree.

USING AN FTN PROGRAM UNIT IN AN F77 PROGRAM

An FTN program unit may reference and be referenced by an F77 program
unit. See the comments in Chapter 1 under D3TERFACE TO OTHER
LANGUAGES. The following additional restrictions apply.

» An F77 program unit cannot pass a subprogram as an argument to
an FTN program unit, nor can an ETN unit pass a subprogram to an
F77 unit.

i An F77 function returning a C0M1PLEX*8 value cannot be referenced
by an ETN program unit, nor can an FTN function returning a
G0MPLEX*8 value be referenced by an F77 program unit.

• Data of types that exist in F77 but not in FTN cannot be passed
as arguments.

• An F77 subroutine cannot use the F77 alternate return mechanism
(that is, RETURN (expression)) if it will be called by an ETN
program unit. The F77 subroutine must use the alternate
mechanism (that is, GO TO (dummy variable)).

• F77 cannot pass unaligned arguments to ETN program units.

Any program unit for which no modifications to use the added power of
F77 are contemplated, and which can be invoked by an F77 program unit,
can be left in ETN indefinitely. NO F77 program unit can reference or
be referenced by any program unit that was compiled in R-mode. An ETN
unit in R-mode must be recompiled into V-mode before it can become part
of an F77 program. A few rarely used R-mode FTN constructs are not
available in V-mode. See Unsupported ETN Constructs.

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

PRODUCING AN F77-COMPATIBLE PROGRAM UNIT

The information needed to convert an ETN program unit to an
F77-compatible program unit falls into four categories:

• Constructs that are compiled differently by the ETN and F77
compilers, but which will be compiled in the ETN manner by the
F77 compiler if the compiler is invoked with appropriate options
(optionally acceptable ETN constructs).

• Constructs that are compiled differently by the ETN and F77
compilers, and which cannot be compiled in the ETN manner by the
F77 compiler (reimplemented FTN constructs).

• Constructs that exist in FTN but not in F77 (unsupported ETN
constructs).

• Constructs that exist in FTN and are not part of FORTRAN 77, but
have been added to F77 for compatibility (obsolete ETN
constructs).

Optionally Acceptable ETN Constructs
The various compiler options mentioned below are fully defined in
Chapter 9.
The optionally acceptable ETN constructs, and their F77 versions, are
as follows. In each case, the F77 version conforms to the FORTRAN 77
standard, while the Fm version does not.

ETN DO Loops: An FTN DO loop always executes once, and permits
extended DO ranges. An F77 DO loop can execute zero times and forbids
extended DO ranges. This difference can be insidious because all ETN
DO loops are syntactically correct in F77. There are also other
differences, but these do not affect program unit conversion. The two
types of loop are fully compared under the DO Statement in Chapter 6.
To cause the F77 compiler to produce ETN-type DO loops, invoke it with
the -DOl option.

Short Integers: In ETN, the type INTEGER without a * (length)
specification is synonymous with INTEGER*2 (short integer), and integer
constants are stored as INTEGER*2 unless they are too big or contain
too many digits. (See Chapter 2.) In F77, INTEGER is synonymous with
INTEGERS (long integer) and integer constants are stored as INTEGER*4.

TO cause the F77 compiler to produce short integers in the manner of
the ETN compiler, invoke it with the -INTS option.

Fourth Edition, Update 2

CONVERTING ETN PROGRAMS TO F77

The ETN compiler has the -INTL option, which causes it to treat integer
data in the manner described for F77. A program unit that was normally
compiled with -DvlTL in FTN requires no special action regarding integer
data when converted to F77.

Short Logical Data: In ETN, logical data always occupies two bytes
(L0GICAL*2); there is no L0GICAL*4 type. In F77, the type LOGICAL
without a * (length) specification is synonymous with L0GICAL*4, and

To cause the F77 compiler to produce short logical data (except where
L0GICAL*4 has been explicitly specified) invoke it with the -EOGS
option.

Static Storage Default: Both the FTN and F77 compilers offer the
-DYMv!M/-SAVE option. In ETN, the default is -SAVE, so that all data is
static. In F77, the default is -DYNM, so that all data is dynamic
unless explicitly declared static. This dynamic storage property is
required by the EORTRAN 77 standard.
If the correct operation of an FTN program unit is dependent on some or
all of its data being static by default, the -SAVE option must be given
explicitly when it is compiled in F77.
A program unit that was normally compiled with -DYNM in ETN requires no
special action regarding storage class when converted to F77.

Reimplemented ETN Constructs
Mfost of the effort required in converting an FTN program unit to F77
will concern reimplemented constructs. Each instance of such a
construct must be examined, and modified if necessary, to be sure it
will produce the results desired when run under F77.

The reimplemented FTN constructs and their F77 versions are as follows.
In each case where standard conformance is involved the F77 version
conforms to the FORTRAN 77 standard, while the FTN version conforms to
the EORTRAN 66 standard.

Mtost reimplemented constructs are syntactically identical in
ETN and F77. NO error messages will result when such
constructs are encountered. They must be found by inspecting
the source code.

Listing Control: In FTN, the interaction between the compiler options
that create the source listing and the program statements that turn

Fourth Edition

FORTRAN 77 Reference Guide

source listing generation on and off is somewhat different than in F77.
The two charts below illustrate the difference. Note that in F77,
EULL LIST is an obsolete synonym for LIST.

-LIST ND -LIST YES -EXPLIST

ND LIST NO LISTING ND LISTING EULL LISTING

LIST ND LISTING NORMAL LISTING EULL LISTING

EULL LIST NO LISTING EULL LISTING FULL LISTING

-ND_LISTING -LISTING -EXPLIST

ND LIST NO LISTING ND LISTING ND LISTING

LIST ND LISTING NDRMAL LISTING EULL LISTING

EULL LIST ND LISTING NORMAL LISTING EULL LISTING

Global Mfode: FTN assigns the global mode to those names that are not
explicitly typed and whose first appearance in the program follows the
global mode statement. F77 assigns the global mode to all names that
are not explicitly typed, whether or not they follow the global mode
statement.

Intrinsic Functions: FTN treats IFIX, FLOAT, and IDINT as generic
functions, not restricting their argument to a particular type. F77
provides the INT and REAL generic functions, but treats IFIX, FLOAT,
and IDINT as specific functions requiring a particular type.

FTN allows L0GICAL*2 arguments in the following intrinsics: LS, RS,
SHFT, LT, RT, AND, OR, NOT, and XOR. F77 allows only INTEGER*2 and
INTEGER*4 arguments.

EORTRAN 77 introduces a number of new intrinsic functions. Their names
may conflict with those of user-supplied subprograms. To cause such a
duplicate name to refer to the user-supplied subprogram, specify it in
an EXTERNAL statement. The similarly-named intrinsic will then be
unavailable to that program unit.

Intrinsics in Constant Expressions: FTN allows a subset of the
intrinsic functions In constant expressions. F77 does not allow this
prac t ice .

Fourth Edition

CONVERTING ETN PROGRAMS TO F77

Input/Output: In FTN, an unformatted sequential file must consist of
fixed length records. In F77, such a file may consist of either fixed
or variable length records.

In FTN, BACKSPACE works only on tape files. In F77, it will work on
all formatted sequential files and on fixed length unformatted
sequential files.

In ETN, a READ or WRITE can access more than one record. In F77, a
READ or WRITE always accesses a single record (slash editing excepted).

The method for increasing maximum record length has been greatly
simplified in F77. Use of ATTDEV is no longer required. The F77
method is described under INCREASING MAXIMUM RECORD LENGTH in
Chapter 6.

Extra Parentheses in I/O Statements: FTN ignores extra parentheses in
I/O lists, while F77 considers them syntax errors. Prohibiting the
extra parentheses prevents certain ambiguities that could otherwise
arise in an I/O list.

Blanks in Format Lists: FTN allows blanks as well as commas to
separate format list descriptors. F77 ignores blanks in format lists
unless they are in a character or Hollerith constant.

Slash Edit-Control Descriptor: In FTN, execution of the statement:

WRITE (N,100)
100 EORMAT (/)

will cause one blank record to be written. In F77, two blank records
will be written.

STOP and PAUSE Statements: In ETN, the number (if any) printed by a
SIOP or PAUSE statement will be in octal form. F77 prints such a
number in decimal.

The FTN STOP statement has no effect on I/O units,
statement closes any I/O units used by the program.

STOP

Unsupported FTN Constructs

The only frequently used FTN construct not supported in F77 is the
TRACE statement, which was used in conjunction with the -TRACE compiler
option (also unsupported) as a debugging tool.

Fourth Edition

EORTRAN 77 Reference Guide

When assistance in debugging an F77 program is required, use the far
more powerful Source Level Debugger, available from Prime as a
separately priced item. For complete information on using the
debugger, see the Source Level Debugger User's Guide.
Certain specialized FTN constructs are dependent on FTN compiler
options that are not supported by the F77 compiler. When one of theseconstructs has been used in an FTN program unit being converted to F77,
it must be replaced with an equivalent F77 construct, or eliminated
entirely. The options are:

The -32R and -64R options: A few FTN constructs are available only in
R-mode: the commonly used ones are multi-level alternate returns, and
variable-length argument lists. Mtethods that provide the same results
and work in V- and I-mode can always be found.

The -SPO Option: The ETN constructs dependent on the -SPO option are
not enumerated here, as they are of interest only to certain
specialized users who need no additional information. If there is no
alternative to using an -SPO construct, be sure that the program unit
is otherwise callable from F77, and keep it in FTN form.

Obsolete FTN Constructs

The following features of FTN are not standard in EORTRAN 77. F77 has
been extended to accept them, but they are considered obsolete
techniques. Do not use them in new programs.
The obsolete techniques will always produce the same results in F77 as
in FTN. They are mentioned here so that those converting FTN programs
to F77 will know that, despite their nonstandard status, they can be
ignored during the conversion process. They are not explained here,
because they are properly part of FTN, not F77. For information on
them, see the FORTRAN Reference Guide.
The obsolete features are:

• The format nOddd... for octal constants

• The ENCODE and DECODE statements for in-storage type conversion

Hollerith strings

Indexing a multi-dimensional array with
reference in an EQUIVALENCE statement

one-subscript

Alternate returns using a GO TO to a statement-label dummy
variable

Use of "$" instead of "*" to denote a statement label constant

Fourth Edition

CONVERTING ETN PROGRAMS TO F77

Extended DO ranges, except when the E77 compiler is invoked with
the -DOl option for generation of FTN type DO loops. If an
extended DO range is present in a program compiled with -NDD01
(the default) no error will be detected, but unpredictable
results will occur. See Chapter 9 for more on the -D01/-ND_D01
option.

PRODUCING AN F77 STANEftRD PROGRAM UNIT

An F77 standard unit is a converted ETN unit that contains no
optionally acceptable constructs. Such a unit must compile without
errors and give the expected results when compiled with the default
options -ND_D01, -INTL, -LOGL, and -DYNM.
With respect to reimplemented, unsupported, and obsolete FTN
constructs, the task of producing an F77 standard program unit is
identical to that of producing an F77 compatible program unit.

Elimination of Optionally Acceptable Constructs

To eliminate an FTN program unit's dependence on the similarity of
INTEGER with INTEGER*2 and LOGICAL with L0GICAL*2, the following steps
can be taken. Where INTEGER*2 or L0GICAL*2 data is specifically
desired, modify or create the appropriate type-statement. Where
INTEGER*4 and LOGICAL*4 will do, be sure that use of the longer data
types will not cause mismatch of arguments in subprogram invocations,
or unexpected results in mixed-type expressions and assignments.

Elimination of dependence on ETN type handling of DO loops is
accomplished as follows:

1. Eliminate any extended DO ranges. The simplest way is to
substitute an appropriate subprogram invocation.

2. Where the program unit's logic is unalterably dependent on the
one trip property of the FTN DO loop (which is only rarely the
case) insert appropriate conditional statements into the source
code to insure that the trip will occur.

Existing conditional statements serving only to prevent the compulsory
one trip if the DO test is already satisfied when control reaches the
loop can be left in or deleted as desired. They merely duplicate thenormal action of an F77 DO loop.

Elimination of a program unit's dependence on the -SAVE option is
accomplished by naming all data items that must be static in a SAVE
statement in the program unit. See the SAVE Statement in Chapter 3.

Fourth Edition

Memory Formats
for F77

Prime computers use a 16-bit memory halfword. All EORTRAN 77 data
types except CHARACTER occupy either 32 bits or some multiple of 32
bits. CHARACTER data occupies one byte per character.

F77 includes the INTEGER*2, IOGICAL*2, and L0GICAL*1 types for
compatibility with FTN; these occupy 16, 16, and 8 bits respectively.
These types should never be used in new programs.

Figure D-l summarizes the sizes and internal bit-usages of the F77 data
types. Detailed descriptions of each type are presented below.

DATA TYPE

LOGIC

IOGICAL*2 16 bits. Bits 1-15=0

DDGICAL*! 8 bits. Bits 1-7=0

1=.TRDE.

Bit 16: 0=.FALSE.
1=.TRDE.

Bit 8: 0=.FALSE.
1=.TRUE.

INTBGER*2 16 bits. Bit 1 = sign bit. INTEGER numbers are in 2
complement representation with a value range of -32768 to 32767. These

E35ig35aS53

Fourth Edition

EORTRAN 77 Reference Guide

I'LOGICAL*!

S F R A C T I O N EXPONENT REAL'

DOUBLE PRECISION
(REAL*8)

S F R A C T I O N Ell
128 \mm—11,

S FRACTION (REAL) EXPONENT c
(REAL) b FRACTION (IMAGINARY) EXPONENT

(IMAGINARY)

FRACTION (REAL) FRACTION (IMAGINARY)

CHARACTER

Internal Representations of Prime F77 Data Types
Figure D-l

Fourth Edition

MEMDRY FORMATS EOR F77

Integer arithmetic is always exact. Integer division truncates, rather
than rounds.

INTEGER*4 32 bits. Bit 1 = sign bit. Integer numbers are in 2's
complement representation with a value range of -2147483648 to
2147483647. These numbers, in octal (halfword 1, halfword 2) are
('100000, '000000) and ('077777, '177777) respectively. Note that -0=0
and -(-2147483648) = -2147483648.

Integer arithmetic is always exact. Integer division truncates, rather
than rounds.

Caution

Explicit use of DBLE (FLOAT (1*4)) can cause the loss of the
low-order 8 bits of precision. Mxed mode arithmetic, however,
will not lose precision.

REAL*4 32 bits. Bit 1 = sign bit. Bits 2-24 = fraction. Bits 25-32 =
exponent. The fraction and sign are treated as a 2's complement number
and the exponent is an unsigned, excess 128, binary exponent. In
general, any floating point number is represented as:

N = M * 2**(E-128)

where:

-1< M < -1/2 or 1/2 < M < 1
0 < E < 255

Zero is represented as M = 0, E = 0.

The value range, in octal (halfwordl, halfword2) is:

('100000, '000377) [SeeNote] to ('077777, '177777)

corresponding to -1*2**(127) and (l-e)*2**(127).

The values closest to zero, in octal are:

('137777, '177400) and ('040000, '000000) [See Note]

Fourth Edition

EORTRAN 77 Reference Guide

ilization ensures that bits 1 and 2 are different and is achie
shifting left 1 bit at a time. Hence, the effective precision
ween 22 and 23 bits.

Note
lese numbers will cause exponent ove
<=» asymmetry of 2' s complement notati ™

DOUBLE PRECISION 64 bits. Bit 1 = sign bit. Bits 2-48 = fraction.
Bits 49-64 = exponent. The fraction and sign are treated as a 2's
complement number and the exponent is a signed, excess 128, binary
exponent. In general, any double precision floating point number is
represented as:

N = M * 2 (E-128)

-1 < M <-l/2 or 1/2 < M < 1
-32768 < E < 32767.

Zero is represented as M = 0, E = 0

The value range, in octal (halfwordl, halfword2, halfword3, halfword4)

('100000, '000000, '000000. '077777) [See Note] to
('077777, '177777, '177777, '077777)

corresponding to -1*2**32639 and (l-e)*2 32639

The values closest to zero, in octal, are:

('137777, '177777, '177777, '100000) and
('040000, '000000, '000000, '100000) [See Note]

corresponding to (-1/2+e)*2**-32896 and l/2*2**-32896

Normalization ensures that bits 1 and 2 are different and is achieved
by shifting left 1 bit at a time. Hence, the effective precision is
between 46 and 47 bits.

Fourth Edition

MEMDRY FORMATS FOR F77

Note

These numbers will cause exponent overflows if negated due to
the asymmetry of 2's complement notation.

nent. Bi.
113-128 are unused (set to 0). The fraction and sign are treated as a
2's complement number and the exponent is a signed, excesF 19ft
exponent. A REAL*16 floating point number is represented as:

= M * 2 (E-128)

-1 < M <-l/2 or 1/2 < M 1
-32768 < E < 32767

Zero is represented as M = 0, E = 0

value range, in octal (halfwordl, halfword2,...halfword8) is:

10000,'000000,'000000,'000000,'077777,'000000,'000000,'000000)
077777,'177777,'177777,* 077777,'177777,'177777,f177777,'000000)

corresponding to -1*2**32639 and (l-e)*2 32639 [See Note]

values closest to zero, in octal, are:

7777,'177777,'177777,'100000,'177777,'177777,'177777,'000000)
J40000,'000000,'000000,'100000,'000000,'000000,'000000,'000000)

•responding to (-1/2+e) *2**-32896 and l/2*2**-32896 [See Note]

malization ensures that bits 1 and 2 are different and is achi
shifting left 1 bit at a time. The effective precision is between

112 and 113 bits.

Note

These numbers will cause exponent overflows if negated due t<
le asymmetry of 2's complement notatio

Fourth Edition

FORTRAN 77 Reference Guide

COMPLEX 64 bits. A complex number is defined as two REAL*4 entities
(see above) representing the real and imaginary parts.

CHARACTERS Prime uses ASCII as its standard internal and external
character code. It is the 8-bit, marking variety (parity bit always
on). Thus, Prime's code set is effectively a 128-character code set.
(ASCII spacing representation, parity bit always off, can be entered
into the system, but most system software will fail to recognize the
characters as their terminal printing equivalent.)

Each character occupies one byte. The length of a CHARACTER item may
be up to 32767 characters.

Fourth Edition

The F77 main program, TEST_SHORTCALL.F77 is as follows:

C Test Program — Requires FOO. PMA, BAR.PM1A, and NUM.PM1A
PROGRAM TEST_SHORTCALL

PARAMETER (IPAR = 2)
INTEGER I, J, K, FOO,NUM

C Three PMA routines are SHORTCALLED: FOO (one argument),
C BAR (no argument), and NUM (two arguments)

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

SHORTCALL FOO(IPAR*4), BAR, NUM(2)
C
C Initialize I, J, and K

1 = 1
J = 130
K = 3
I = FOO(J)
WRITE (1, 10) I

10 FORMAT ('The value of I should be 13. I =' 14)
C PRINT *, 'The value of I should =13, it is ',1

CALL BAR
I = NUM(J,K)
WRITE (1, 20) J, K, I
FORMAT ('J =', 14, ' K
PRINT *, 'J = ',J,' K
STOP
END

* , 14, ' I = J + K; I =•, 14)
• MC,1 I = J+K, I = ',1

TEST_SHORTCALL.F77 calls the PMA routines FOO, BAR, and NUM. FOO and
NUM are functions. FOO.PMA, BAR.PMA, and NUM.PMA are as follows:

* FOO.PMA
* Initialize V-mode program
*

SEG
RLIT* E)efine FOO's entry point name
SUBR FOO
DYNM ARGl (2)

*
* Save address of first (and only) argument
FOO STL ARGl* Load argument into L register

LEL ARGl,** Divide argument by 10
DIV =10* Return to calling program
JMP XB%
END

Fourth Edition, Update 2

SHORTCALL EXAMPLES

* BAR.PMA
* Initialize V-mode program

SEG IMPURE
RLIT

* Define BAR'S entry point name
ENT BAR
EXT TNOU

DYNM TEMP(2)

* Save return address in TEMP
BAR EAL XB%

SLL TEMP
* Use PCL to print out a message

PCL PTNOU,*
AP =C BAR subroutine was SHORTCALLedH ' ,S
AP =32,a

* Restore return address
EAXB TEMP,*

* Return to calling program
JMP XB%

PTNOU IP TNOU

: NUM.PMA
* Initialize V-mode program

SEG
* Define MdM's entry point name

SUBR NUM
DYNM ARGl(2), ARG2(2)

* Save address of first argument in ARGl
NUM STL ARGl
* Save return address in ARG2

EAL XB%
SIL ARG2

* Load pointer to first argument in XB
EAXB ARGl,*

* Load first argument into L register
LEL XB

* Add second argument to first argument
AEL XB

* Restore return address
EAXB ARG2,*

* Return to calling program
JMP XB%
END

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Compiling, Linking, and Executing the V-Mfode Programs

To execute the programs, compile TEST_SHORTCALL and assemble FOO, BAR,
and NUM. Link the four programs, creating TEST_SHORTCALL.RUN. If you
invoke the programs with

r test shortcall

the result is

The value of I should be 13. I = 13
BAR subroutine was SHORTCALLed!

J = 130 K = 3 I = J + K; I = 133**** STOP

I-MEJDE EXAMPLES

The I-mode FORTRAN 77 program CALLQF.F77 calls two PMA functions,
SQUARE and CUBE, using the Prime SHORTCALL Interface.

The I-Mfode Programs .

CALLQF.F77 calls two PMA functions; CALLQF.F77 must be compiled
with the -321 option.

C Test Program for I mode SHORTCALL
C Requires SQCUBE.PMA

PROGRAM CALLQF

C The PMA program SQCUBE with two entry points
C SQUARE and CUBE is SHORTCALLED; both SQUARE
C and CUBE are functions.
C

INTEGER X, Y, SQUARE, CUBE
SHORTCALL SQUARE, CUBE

C
X = 92UARE(13)
WRITE (1, 10) X

10 FORMAT ('The value of X should be 169. X =' 14)
Y = CUBE(IO)
WRITE (1, 20) Y

20 FORMAT ('The value of Y should be 1000. Y =' 15)
SLOP
END

Fourth Edition, Update 2

SHORTCALL EXAMPLES

The I-mode program SQCUBE.PMA contains the two functions SQUARE
CUBE that are SHORTCALLed by CALLQF.F77.

* SQCUBE.PMA
*

SEGR
ENT SQUARE
ENT CUBE

CUBE 6,R1
M 6,R1
PIM
JMP SQ1

SQUARE 6,R1
921

PIM
6,R1
6

L 2,6
JMP RO
END

declare entry to SQUARE
declare entry to CUBE

position for next multiply
jump to next multiply

position for return
move into R2 (where F77 expects it)

Compiling, Linking, and Executing the I-Mtode Programs

To execute the programs, compile CALLQF with the -321 option and
assemble SQCUBE. Link the two programs, creating CALI£F.RUN. If you
invoke the programs with

r callqf

the result is

The value of X should be 169. X = 169
The value of Y should be 1000. Y = 1000
**** STOP

Fourth Edition, Update 2

The Search Rules
Facility

INCLUDE FILES AND THE SEARCH RULES FACILITY

As of Revision 21.0, the PRIMOS search rules facility enables you to
establish an INCLUDE$ search list. An INCLUDE$ search list is a list
of directories to be searched whenever an INCLUDE statment or $INSERT
directive is processed by the compiler. Although there are several
kinds of search lists, this appendix explains only the INCLUDE$ search
list. For complete information about PRIMOS search rules, see the
Advanced Programmer's Guide, Volume II.

When you specify a file in an INCLUDE statement or $INSERT directive,
you must ordinarily give as much of the file pathname as PRIMOS needs
to locate the file. If you often use the INCLUDE statements or $INSERT
directives to refer to files, and if the files are kept in a number of
different directories, keeping track of the file pathnames can be
difficult. Now, however, you can locate a file by supplying only a
filename and using the search rules facility to provide the full
pathname.

Establishing Search Rules
To establish the search rules, perform the following steps:

1. Create a template file called

[yourchoice.] INCLUDE$.SR

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

This file should contain a list of the pathnames of the
directories that contain the files you often refer to when
using INCLUDE and $INSERT statements. List the directories in
the order in which you want them to be searched. For example,
you might create a file called MTC.INCLUDE$.SR that contains the
following directory names:

<SYS1>MASTER_DIR>INSERT_FILES
<SYS2>ME

Activate the template file with the SET_SEARCH_RULES (SSR)
command. For example, if your file is named MY. INCLUDE$.SR,
type

OK, SSR MY.INCLUDE$

This command sets your INCLUDE$ search list. This search list
may contain system search rules and administrator search rules
in addition to the rules you specified in MY. INCLUDE$.SR.

When you give the SSR command shown in step 2, PRIMOS copies the
contents of MY. INCLUDE $.SR into your INCLUDE $ search list. If you have
no special system or administrator search rules, your INCLUDE$ search
list appears as follows when you give the LIST_SEARCH_RULES (LSR)
command:

List: INCLUDE$
Pathname of template: <MYSYS>ME>F77>MY.INaUDE$.SR

[home_dir]
<SYS1>MASTER_DIR>INSERT_FILES
<SYS2>ME

[home_dir], your current attach point, is the system default. It is
always the first directory searched, unless you remove it from the list
or change the order of evaluation by using the MX)_SYSTEM option of the
SSR command. Additional search rules, established as system-wide
defaults by your system administrator, may also appear at the beginning
of your INCLUDE$ search list. The above search rules would initiate
the search in [home_dir], then search <SYS1>MASTER_DIR>INSERT_FILES,
and lastly <SYS2>ME.

The SET_SEARCH_RULES and LIST_SEARCH_RULES commands are described in
the PRIMOS Commands Reference Guide. For more information about

Fourth Edition, Update 2

THE SEARCH RULES FACILITY

Using Search Rules
Once you have set the search list, any INCLUDE or $INSERT statement in
a program can give just the filename rather than the full pathname of
the file. PRIMOS then searches the contents of the directories in the
INCLUDE$ search list for the filename specified in the INCLUDE or
$INSERT statement. If PRIMDS finds the file, it stops searching and
returns the full pathname of the file to the compiler. The compiler
then uses this pathname to locate the file and inserts its contents
into the source program.

Using [referencing_dir]
The Advanced Programmer's Guide describes several expressions you can
use in your list of search rules. One of these, [ref erencing_dir], has
a special meaning for INCLUDE$ search lists. Like [home_dir],
[referencing_dir] is a variable that PRIMOS replaces with a directory
pathname. [referencing_dir] always evaluates to the pathname of the
directory from which the request for an INCLUDE or $INSERT file is
made. Thus, if an INCLUDE or $INSERT statement is located in a
program, [referencing_dir] evaluates to the pathname of the directory
that contains the program.

[referencing_dir] may be useful if all of the following three
circumstances hold:

You are compiling a program that is not in your current
directory.
The directory containing the program is not in your search rules
l i s t .

Your program contains one or more INCLUDE or $INSERT statements.

Under the above circumstances, the search for the INCLUDE or $INSERT
file succeeds only if [referencing dir] is in your list of search
rules.

You can also use [referencing_dir] for programs that contain nested
INCLUDE or $INSERT statements. INCLUDE or $INSERT statements are
nested if the file specified by an INCLUDE or $INSERT statement also
contains an INCLUDE or $INSERT statement. If nested INCLUDE or $INSERT
statements specify files that are located in the same directory as the
file in which they are nested, putting [referencing_dir] at the top of
your list of search rules could speed up the search somewhat.

Fourth Edition, Update 2

Alphabetic Summary
of F77 Intrinsic

Functions

This appendix is a quick reference to the F77 Intrinsic Functions. The
functions are presented alphabetically according to how they are
referenced. In most instances the Specific Name of the function is
used, but in those instances where there is no Specific Name, the list
uses its Generic Name. For a detailed discussion of the Intrinsic
Functions see Chapter 8.

Alphabetic Summary of F77 Intrinsic Functions

How Number of Argument Resul t Generic
Referenced Arguments Type Type Name

ABS Real Real ABS
ACOS Real Real ACOS
AIMAG Complex Real
AINT Real Real AINT
ALOG Real Real LOG
ALOG10 Real Real LOG10
AMAXO >= 2 Integer Real MAX
AM1AX1 >= 2 Real Real MAX
AMINO >= 2 Integer Real
AMIN1 Real Real MIN
AMOD Real Real MOD
AND Any Integer Integer
ANINT Real Real ANINT
ASIN Real Real ASIN

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Alphabetic Summarv of F77 Intrinsic Functions

How Number <3 f Argument Result Generic
Referenced Arguments Type Type Name

ATAN Real Real ATAN
ATAN2 Real Real ATAN2
CABS Complex Real ABS
CCOS Complex Complex COS
CDABS Complex*16 E)ouble ABS
CDOOS Complex*16 Complex*16 COS
CDEXP Complex*16 Complex*16 EXP
CDLOG Complex*16 Complex*16 LOG
CDSIN Complex*16 Complex*16 SIN
CDSQRT Complex*16 Complex*16 SQRT
CEXP Complex Complex EXP
CHAR Integer Character
clog Complex Complex LOG
CMPLX or Integer Complex CMPLX
CMPLX or Real Complex CMPLX
CMPLX or Double Complex CMPLX
CMPLX or Real*16 Complex*16 CMPLX
CMPLX or Complex Complex CMPLX
CMPLX or Complex*16 Complex CMPLX
CONJG Complex Complex CONJG
COS Real Real COS
COSH Real Real COSH
CSIN Complex Complex SIN
CSQRT Complex Complex SQRT
DABS Double Double ABS
DACOS Double Double ACOS
DASIN Double Double ASIN
DATAN Double Double ATAN
DATAN2 Double Double ATAN2
DBLE Integer Double EBLE
EBLE Real Double LBLE
IBLE Double Double LBLE

1 EBLE Complex Double LBLE
I EBLEQ Real*16 Double LBLE

DCMPLX or Integer Complex*16 DCMPLX
DCMPLX or Real Complex*16 DCMPLX
DCMPLX or Double Complex*16 DCMPLX

1 DCMPLX or Real*16 Complex*16 DCMPLX
DCMPLX or Complex Complex*16 DCMPLX

I DCMPLX or Complex*16 Complex*16 DCMPLX 1
DOQNJG Complex*16 Complex*16 CONJG
DCOS Double Double C O S 1
DCOSH Double Double COSH
DDIM Double Double DIM

1 DEXP Double Double EXP
DIM Real Real DIM
DIMAG Complex*16 Double
DINT Double Double AINT

Fourth Edition, Update 2

ALPHABETIC SUMMARY OF F77 INTRINSIC FUNCTIONS

Alphabetic Summary of F77 Intrinsic Functions

How Number of Argument Result Generic
Referenced Arguments Type Type Name

D L O G 1 Double Double LOG
E L O G 1 0 1 Double Etouble LOG10
D M A X 1 > == 2 Double Double MX
D M I N 1 2 Double Double MIN
D M O D 2 Double Double MOD
D N I N T 1 Double Double ANIKTT
D P R O D 2 Real Double
D R E A L 1 Complex*16 Double LBLE
D R E A L 1 Complex*16 Double
D S I G N 2 Etouble Double SIGN
D S I N 1 Double Double SIN
D S I N H 1 Double Etouble SINH
D S Q R T 1 Double Double SQRT
D T A N 1 Double Double TAN
E T A N H 1 Double Etouble TAMJH
E X P 1 Real Real EXP
F L O A T 1 Integer Real REAL
I A B S 1 Integer Integer ABS
I C H A R 1 Character Integer
I D I M 2 Integer Integer DIM
I D I N T 1 Double Integer INT
I D N I N T 1 Double Integer NINT
I F I X 1 Real Integer INT
I N D E X 2 Character Integer
I N T 1 Integer In teger INT
I N T 1 Real Integer INT
I N T 1 Complex Integer INT
I N T 1 Complex*16 Integer INT
I N T L 1 Integer Integer*4 INTL
I N T L 1 Real Integer*4 INTL
I N T L 1 Double Integer*4 ILNTL
I N T L 1 Real*16 Integer*4 UNTIL
I N T L 1 Complex Integer*4 I M L
I N T L 1 Complex*16 Integer*4 INTL
I N T S 1 Integer Integer*2 INTS
I N T S 1 Real Integer*2 INTS
I N T S 1 Double Integer*2 INTS
I N T S 1 Real*16 Integer*2 INTS
I N T S 1 Complex Integer *2 INTS
I N T S 1 Complex*16 Integer*2 I M S

1 I Q I N T 1 Real*16 Integer INT
I Q N I N T 1 Real*16 Real*16 NINT
I S I G N 2 Integer Integer SIGN
L E N 1 Character Integer
L G E 2 Character Logica l
L G T 2 Character Logica l
L L E 2 Character Logica l
L L T 2 Character Logica l

Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Alphabetic Summarv of F77 Intrinsic Functions

HOW Number of Argument Result Generic
Referenced Arguments Type Type Name

LOC Any but CHAR
or L0G*1

Integer*4

LS Integer Integer
LT Integer Integer
MAXO >= 2 Integer Integer MAX
MAXl >= 2 Real Integer
MINO Integer Integer MIN
MUNI >= 2 Real Integer
MOD Integer Integer MOD
NINT Real Integer NINT
NOT Integer Integer
OR Any Integer Integer
QABS Real*16 Real*16 ABS
QACOS Real*16 Real*16 ACOS
QASIN Real*16 Real*16 ASIN
QATAN Real*16 Real*16 ATAN
QATAN2 Real*16 Real*16 ATAN2
QCOS Real*16 Real*16 COS
QCOSH Real*16 Real*16 COSH
QDIM Real*16 Real*16 DIM
QEXP Real*16 Real*16 EXP
QINT Real*16 Real*16 AINT
QLOG Real*16 Real*16 LOG
QLOG10 Real*16 Real*16 LOG10
QMAX1 >= 2 Real*16 Real*16 MAX
QMINl Real*16 Real*16 MIN
QMOD Real*16 Real*16 MOD
QNINT Real*16 Real*16 ANBTT
QPROD Double Real*16
QSIGN Real*16 Real*16 SIGN
QSIN Real*16 Real*16 SIN
QSINH Real*16 Real*16 SINH
QSQRT Real*16 Real*16 SQRT
QTAN Real*16 Real*16 TAN
QTANH Real*16 Real*16 TANH
REAL Real Real REAL
REAL Real*16 Real REAL
REAL Complex Real REAL
REAL Complex*16 Real REAL
REAL Complex Real
RS Integer Integer
RT Integer Integer
SHET 2 or 3 Integer Integer
SIGN Real Real SIGN
SIN Real Real SIN
SINH Real Real SINH
SNGL Double Real REAL

Fourth Edition, Update 2

INDEX

Inde

(number sign), 7-11

$ (dollar sign), 7-11

* (asterisk), 4-4, 7-11

+ (plus), 7-10

, (comma), 7-11

- (minus), 7-10

. (decimal point), 7-11

Numbers

-321 option, 9-4

-32IX option, 9-5

-32R option, C-8

-64R option, C-8

-64V option, 9-5

A descriptor, 7-

ACCESS= option, 6-11, 6-16

ACTION= option, 6-12

Actual argument, 2-1

-ALL0W_PRECOMWv1ECriON compiler
option, 9-5

Alphabetic Summary of F77
Intrinsic Functions, H-l to
H-5

Alternate returns, 8-29, 8-30

ANYUNIT= option, 6-12

Arguments,
actual, 2-1
arrays as, 8-33, 8-34
cbmmy, 2-2
intrinsic functions as, 8-3,

8-4
long and short integer, 8-4
subprograms as, 8-34, 8-35

Fourth Edition, Update 2

FORTRAN 77 Reference Guide

Ar i thmet ic ,
conversion, 2-17
data in assignment statement,

4-2
expressions, 2-1, 2-13
operators, 2-13

Arrays,
as arguments, 8-33, 8-34
assumed-size, 8-32
character, as arguments, 8-34
description of, 2-11
dimensions, adjustable, 8-32
multidimensional, 12-1, 12-2
references, 2-11, 2-12
using Namelist with, 6-36 to

6-38

ASCII-7, 2-2, 8-14
collating sequence, 8-18

ASSIGN statement, 4-6

ASSIGNED GO TO statement, 5-2

Assignment statements,
arithmetic data in, 4-2
ASSIGN, 4-6
character data in, 4-5
definition of, 4-1
logical data in, 4-5
mixed-type, 4-3, 4-4
types of, 4-1

Assumed-size arrays (See -RANGE
compiler option)

Asterisk (*), 4-4, 7-11

B descriptor, 7-8, 7-10

B-Format usage, examples of,
7-12

BACKSPACE statement, 6-21, 6-22

-BIG compiler option, 3-12, 9-6

-BINARY compiler option, 9-6

BIND,
basic commands, 10-4
creating an EPF, 10-2
invoking as a subsystem, 10-2,

10-3
invoking from command line,

10-2, 10-3
linker, 10-1 to 10-8
l ink ing l ibrar ies, 10-4
resolving references, 10-6

BUSID commands,
FILE, 10-6
HELP, 10-7, 10-8
LIBRARY, 10-5
LCftD, 10-5
MAP, 10-5 to 10-7
QUIT, 10-7
table of, 10-4

Blank control editing, 7-14

BLANK= option, 6-11, 6-17

Blanks in format lists, C-7

BLOCK DATA statement, 3-20, 8-27

BN descriptor, 7-14

Business editing, 7-10 to 7-12

BZ descriptor, 7-13

CALL statement, 8-24

Ca l l s ,
funct ion, 12-3
l i b ra ry, 12 -5

Capab i l i t i es ,
data declaration, 1-2
execution-time, 1-3
input/output, 1-3
subprogram, 1-3

Carriage control, 6-30

Fourth Edition, Update 2

INDEX

Character,
arguments, adjustable, 8-31
arrays as arguments, 8-34
assignment, 3-7
comparison of entities, 3-8
concatenation, 3-7
constant editing, 7-9
data in assignment statement,

4-5
editing, 7-8, 7-9
expressions, 2-1, 2-14
function, adjustable, 8-31
input/output, 3 -8
intr insic funct ions, 3-8
operator, 2-14
Prime Extended Character Set,

A-1
set for FORTRAN 77, 2-2, 2-3
substrings, 3-6
use of octal constants, 3-7

Character data type, 3-6 to 3-8

CHARACTER data type, 2-6, 2-9,
2-10, D-5

Character editing, 7-9

CLOSE statement, 6-15

-CLUSTER compiler option, 9-6,
12-6

Collating sequence, A-6
ASCII-7, 8-18

Column, 2-3

Comma (,), 7-11

Comment lines, 2-4

COMTON,
block, 3-11, 3-12
statement, 3-11, 3-12

Compiler,
end-of-compil ati on mes sage,

9-4
error messages, 9-2
generation capabil i t ies, 9-1
invoking, 9-1, 9-2

Compiler (continued)
specifying options, 9-2
table of error message severity

levels , 9-3

Compiler control directives,
3-2, 3-23

FULL LIST, 3-23
$INSERT, 3-24
LIST, 3-23
NO LIST, 3-23

Compiler options,
-321, 9-4
-32IX, 9-5
-32R, C-8
-64R, C-8
-64V, 9-5
abbreviations, 9-24 to 9-27
-AIJ^0W_PFlECON]SIECTION, 9-5
-BIG, 3-12, 9-5
-BINARY, 9-6
-CLUSTER, 9-6, 12-6
-D_STATEMENT, 9-8
-DCLVAR, 9-7
-DEBUG, 9-7
discussion of, 9-4 to 9-24
-DOl, 9-8
-DYNM, 9-9, 12-6, 12-7
-ERRLIST, 9-9
-ERRTTY, 9-9
-EXPLIST, 9-9, 9-10
-EXTENDED_CHARACTER_SET, 9-11
-FRN, 9-11
-F,IN_ENTRY, 9-12
-FULL_HELP, 9-12
-FULLJ0PTIM1IZE, 9-12
-HELP, 9-12
-INPUT, 9-12
-IML, 2-7C, 9-11
-IMS, 2-7C, 9-11
-LCASE, 9-23
-LISTING, 9-13
-LOGL, 2-9, 9-13
-LOGS, 2-9, 9-12, 9-13
-MAIN, 9-14
-MP, 9-14
-MAPWIDE, 9-14
-MAXJGRCWTH_PERCENT, 9-15
-MAX_SLB_STATEMENTS_INL INE,

9-15
-MAXERRORS, 9-15
-NESTING, 9-15
-ND_AÎ OW_PREXO]NINECTION, 9-5

Fourth Edition, Update 2

FORTRAN 77 Reference Guide

Compiler options (continued) Composition of programs, 2-1E
- N O _ B I G , 9 - 6 2 - 1 9
-MOBINARY, 9-6
-NO_D_STATEMENT, 9-8 Compressed format, 6-3
-NOJXLVAR, 9-7
-NOJDEBUG, 9-7 Computed GO TO statements, 5-
- N 0 _ D 0 1 , 9 - 8 5 - 3
-NO_ERRLIST, 9-9
- N D _ E R R T T Y, 9 - 9 C o n d i t i o n - h a n d l i n g m e c h a n i s m ,
- N O _ E X P L I S T , 9 - 9 1 - 8
-̂ _EXTENDED_CHARACTER_SET,

9 - 1 1 C o n d i t i o n a l o u t p u t , 7 - 1 6
-NO_FRN, 9-11
- IO_ETN_ENTRY, 9 -12 Connec t ing a fi le , 6 -7
-NO_MAP, 9-14
- N O J S E S T I N G , 9 - 1 5 , 9 - 1 6 C o n s t a n t s , 2 - 1 0
-NOJDFFSET, 9-16
- N D j D P T I i y LT Z E , 1 2 - 3 C o n t i n u a t i o n l i n e s , 2 - 4
-N0_0VEREL0W, 9-16
- M O _ P B E C B , 9 - 1 9 C O N T I N U E s t a t e m e n t , 5 - 1 6
-ND_PRODUCTION, 9-20
- N O _ R A N G E , 9 - 2 0 C o n t r o l s t a t e m e n t s , 5 - 1 t o 5 -
- N O _ S T A N D A R D , 9 - 2 1 5 - 1 2 t o 5 - 1 5
- M O _ S T A T I S T I C S , 9 - 2 2 a r i t h m e t i c I F , 5 - 4
-NO_STORE_CWNER_FIELD, 9-22, logical IF, 5-5

9-23
- N O _ X R E F , 9 - 2 3 C o n t r o l , l i s t i n g , C - 5 , C - 6
-OFFSET, 9-16
-OPTIMIZE, 9-16, 9-17, 12-6 Conventions, Prime documentat:
- O V E R F L O W , 9 - 1 7 t o 9 - 1 9 x v i
-PBECB, 9-19, 9-20, C-8
- P R O D U C T I O N , 9 - 2 0 C o n v e r s i o n o f p r o g r a m s ,
- R A N G E , 9 - 2 0 F T N t o F 7 7 , C - l t o C - 9
- S A V E , 9 - 2 0 r e f e r e n c i n g r e s t r i c t i o n s , <
- S I L E N T , 9 - 2 1 s t e p s f o r , C - 2
- S O U R C E , 9 - 2 1 t h r e e d e g r e e s o f , C - 3
-SPACE, 9-21
- S P O , C - 8 C o n v e r t i n g F T N p r o g r a m s t o F 7 "
- S T A N D A R D , 9 - 2 1 C - l t o C - 9
-STATISTICS, 9-20, 9-22
-STORE_OWNER_FIELD, 9-22 Credit (CR), 7-11
table of, 9-24 to 9-27
-TTME, 9-23, 12-6, 12-7
-UPCASE, 9-23
- X R E F , 9 - 2 3 _

COMPLEX data, 2-6, 2-8, 2-9, D-5 D descriptor, 7-3, 7-6, 7-13

Conversion of programs,
FTN to F77, C-l to C-9
referencing restrictions, C-3
steps for, C-2
three degrees of, C-3

Converting FTN programs to F77,
C-l to C-9

Credit (CR), 7-11

Complex editing, 7-6

COMPLEX*16 data, 2-6, 2-9, D-5

COMPLEX*8 data, 2-6, 2-8, 2-9

-D_STATEMENT compiler option,~ 9-8

DAM files, 6-3 to 6-5,'6-27

Fourth Edition, Update 2

INDEX

Data Base Management System
(DBMS), 1-6

Data declaration capabilities,
1-2

DATA statement, 3-15, 3-16, 12-5

Data storage, 6-1 to 6-7

E)ata transfer statements,
PRINT, 6-25, 6-31
READ, 6-26 to 6-28
WRITE, 6-25, 6-29, 6-30

Data types,
CHARACTER, 2-6, 2-10, 3-6 to

3-8, D-6
COMPLEX, 2-6, 2-8, 2-9, D-6
C0MPLEX*16, 2-6, 2-9, D-6
DOUBLE PRECISION, 2-6, 2-8,

D-4
four forms of, 2-5
Hollerith constants, 2-6
INTEGER, 2-6, 2-7
INTEGER*2, 2-6, 2-7c, D-l
INTEGER*4, 2-6, 2-7c, D-3
LOGICAL, 2-6, 2-9
LOGICAL*l, 2-6, 2-9, D-l
L0GICAL*2, 2-6, 2-9, D-l
LOGICAL*4, 2-6, 2-9, D-l
REAL, 2-6, 2-8
REAL*16, 2-6, 2-8, D-5
REAL*4, 2-6, D-3

Debugger (DBG) (continued)
examining and modifying data,

11-7, 11-8
getting help, 11-10, 11-11
how to use, 11-2
leaving, 11-11
looking at source code, 11-4
running programs within, 11-3
setting breakpoints, 11-5,

11-6
suspending program execution,

11-5, 11-6
value tracing, 11-9, 11-10

Debugger (DBG) commands,
BREAKPOINT, 11-5, 11-6
colon, 11-7
DBG, 11-2, 11-3
HELP, 11-10, 11-11
LET, 11-9
QUIT, 11-11
RESTART, 11-3
SOURCE, 11-4
table of SOURCE subcommands,

11-4
TYPE, 11-8
WATCH, 11-10

Debugging (See Debugger)

Decimal point (.), 7-11

Delimiters, 6-32

REAL*8, 2-6 Descriptors,
seven major, 2-4 to 2-10 A, 7-8
statement label, 2-6 B, 7-8, 7-10, 7-11
table of, 2-6, 2-7 BN, 7-14

BZ, 7-14
EBG (Source Level Debugger), D, 7-3, 7-6, 7-13

11-1 to 11-11 E, 7-3, 7-5, 7-13
edit-control, 7-2, 7-12 to

-DCLVAR compiler option, 9-7 7-16
F, 7-3, 7-4, 7-13

-DEBUG compiler option, 9-7 field, 7-3 to 7-12
G, 7-3, 7-7, 7-13

Debugger (EBG), I, 7-3, 7-4
assigning new values to L, 7-8

variables, 11-1 nonnumeric, 7-8 to 7-12
continuing program execution, numeric, 7-3 to 7-7

11-6, 11-7 0, 7-4a
definition of, 11-1 Q, 7-3, 7-6, 7-13
entering, 11-2 S, 7-14
evaluating data types, 11-8 SP, 7-14

Fourth Edition, Update 2

FORTRAN 77 Reference Guide

Descriptors (continued)
SS, 7-14
T, 7-15, 7-16
TL, 7-15, 7-16
TR, 7-15, 7-16
X, 7-8
Z, 7-4a

Device control statements,
BACKSPACE, 6-21, 6-22
ENDFILE, 6-24
REWIND, 6-23

Device, assigning a, 6-7

Devices and their default FORTRAN
unit numbers, 6-9

DIMENSION statements, 3-9

Direct access file, 6-3 to 6-5,
6-27

DIRECT= option, 6-16

Directives (See compiler control
d i rec t ives)

Dividing integers, 12-5, 12-6

DO statement, 5-9 to 5-11, 5-12
to 5-16

DO loops, 5-9 to 5-11, 5-12 to
5-16

execution of, 5-10
execution of range, 5-11
FTN compatibility, 5-13, 5-14
nested loops and transfer of

control, 5-12
range of, 5-10

DO WHILE Statement, 5-14 to 5-16

-DOl compiler option, 9-8

Documentation conventions, xvi

Dollar sign ($), 7-11

DOUBLE PRECISION data, 2-6, 2-8,
D-4

Etouble precision editing, 7-6

Dummy argument, 2-2

Dynamic storage default, C-5

-DYNM option, 12-6, 12-7, C-5

E descriptor, 7-3, 7-5, 7-13

-ECS compiler option, 8-15

Edit-control descriptors, 7-2,
7-12 to 7-16

Editing, (Seg also descriptors)
blank control, 7-14
business, 7-10 to 7-12
character, 7-8, 7-9
character constant, 7-9
complex, 7-6
double precision, 7-6
files, 6-5
general, 7-6, 7-7
hexadecimal, 7-4a
Hexadecimal, 7-4a
integer, 7-4
logical, 7-8
octal, 7-4a
Octal, 7-4a
positional, 7-15
real (Exponential), 7-5
real (Nonexponential), 7-4
REAL*16, 7-6
sign control, 7-14

END DO Statement, 5-16

END statement, 5-18

End-of-compil ati on message,
compiler, 9-4

END= label, 6-27

Endfile record, 6-2

ENDFILE statement, 6-24

Entry points, 8-29

Entry points, secondary, 8-28

Fourth Edition, Update 2

INDEX

ENTRY statement, 8-28

EPF (Executable Program Format),
10-1, 10-2

EQUIVALENCE statement, 3-13,
3-14

ERR= label, 6-27

ERR= option, 6-12, 6-16

-ERRLIST compiler option, 9-9

Error messages,
compiler, 9-2
level of, 9-3

Errors and condition-handling
mechanism, 1-8

Errors during I/O, 6-33

-ERRTTY compiler option, 9-9

Evaluation operators, 2-14

Executable Program Format (EPF),
10-1, 10-2

Executing programs, 10-8

Execution-time capabilities, 1-3

EXIST= option, 6-16

-EXPLIST compiler option, 9-9,
9-10

Expressions,
arithmetic, 2-1
character, 2-1
fixed-length character, 2-2
integer, 2-2
integer constant, 2-2
types of, 2-13 to 2-16

-EXTTNDEDjCHARACTERJSET compiler
option, 9-11

Extensions to FORTRAN 77, 1-4

EXTERNAL statement, 3-17

F descriptor, 7-3, 7-4, 7-13

F$IOBF, 6-25, 7-15

F77,
and Prime utilities, 1-6
definit ion of, 1-2
interface to other languages,

1-5
intrinsic function set, 8-2
programming examples, B-l to

B-16
programs, converting from ETN,

C-l to C-9
res t r i c t i ons , 1 -5
var iables, 2-11

F77 Intrinsic Functions,
Summary of, H-l

Field descriptors, 7-3 to 7-12

File control statements,
CLOSE, 6-15
INQUIRE, 6-16 to 6-20
OPEN, 6-11 to 6-14
table of INQUIRE statement

options, 6-18 to 6-20
table of OPEN statement

options, 6-13 to 6-15

FILE= option, 6-11, 6-16

F i l e s ,
and programs, 6-7, 6-8
assigning a device, 6-7
connecting a, 6-7
DAM, 6-4, 6-5, 6-27
definit ion of, 6-2
direct access, 6-3, 6-4, 6-27
ed i t ing , 6 -5
funit number, 6-8
in te rna l , 6 -5
opening a, 6-7, 6-8
operations on, 6-9
SAM, 6-4, 6-5
sequential access, 6-3, 6-4
uni t , 6-7

Fixed-length character
expression, 2-2

Fourth Edition, Update 2

FORTRAN 77 Reference Guide

Fixed-length records, 6-3

FMT=, 6-27

FORM*= option, 6-11, 6-16

Format, 6-26

FORMAT, 6-26

Format lists,
blanks in, C-7
description of, 7-2

FORMAT statement (See
E)escriptors; Editing)

FORMAT statements, 7-1 to 7-16

Format, line, 2-3, 2-4

Formatted record, 6-2

FORMATTED= option, 6-16

FORMS, 1-6, 1-7

Forms Management System (FORMS),
1-6, 1-7

EORTRAN (FTN),
definition of, 1-1

FORTRAN 66,
definition of, 1-1

FORTRAN 77,
capabilities of, 1-2 to 1-4
character set for, 2-2, 2-3
data types, 2-4 to 2-10
definition of, 1-1
Prime documents related to,

x i i i
Prime extensions to, 1-4
statements, 2-3, 2-4
texts about, xi
variables, 2-11

FORTRAN 77, related documents,
Advanced Programmer's Guide,

x i v
Assembly Language Programmer's

Guide, xiv
EMACS Primer, xiv

FORTRAN 77, related documents
(continued)

FORTRAN (FTN) Reference Guide,
x i i i

FORTRAN 77 Programmer's
Companion, xiii

Guide to Prime User Documents,
xv

New User's Guide to Editor and
Runoff, xiv

Prime User's Guide, xiii
PRIMOS Commands Programmer's

Companion, xv
Programmer's Guide to BIND and

EPFs, xiv
Source Level Debugger User's

Guide, xv
Subroutines Reference Guide,

xiv
The ANSI Standard, xv

FORTRAN 77, sources of
information,

Online HELP files, xv
Software Release Etocument, xv

FORTRAN IV, definition of, 1-1

Free-formatted I/O, 6-32
(See also PRINT statement; READ"' statement; WRITE statement)

-FRN compiler option, 9-11

ETN,
compatibility of DO loops,

5-13
definition of, 1-1

FTN constructs,
elimination of dependence on,

C-9, C-10
ENCODE and DECODE, C-8
obsolete, C-8, C-9
optionally acceptable, C-4,

C-5
reimplemented, C-5 to C-7
unsupported, C-7, C-8

FTN programs, converting to F77,
C-l to C-9

-FTN_ENTRY compiler option, 9-12

Fourth Edition, Update 2

INDEX

FULL LIST statement, 3-24

-FULL_HELP compiler option, 9-12

-FUTjLJDPTIMUZE compiler option,
9-12

Function calls, 12-3

FUNCTION statement, 8-22, 8-23

Functions,
external, 8-22
generic, 8-3
intrinsic, 8-1 to 8-20, C-6
in t r i ns i c (bu i l t - i n) , 8 -1
intrinsic, notes for table of,

8-14 to 8-20
intrinsic, table of, 8-5 to

8-13
spec ific , 8 -3
statement, 8-21, 8-22

I descriptor, 7-3, 7-4

I/O Control system, (See also
IOCS)

definit ion of, 6-1
fi l e s , 2 - 2
l ist , 7-1, 7-2
routines, 2-7
statement syntax, summary of,

6-40
statements, extra parentheses

in, C-7

IF statement,
arithmetic-IF, 5-4
block-IF, 5-6 to 5-9
Block-IF considerations, 5-8
Block-IF execution, 5-8
Block-IF nesting, 5-8
Block-IF statementents in, 5-7
Block-IF structure, 5-6
logical-IF, 5-5

IMPLICIT statement, 3-3

G descriptor, 7-3, 7-8, 7-13

General editing, 7-6, 7-7

Generic functions, 8-3

Global mode, C-6

-HELP compiler option, 9-12

Hexadecimal Constants, 2-7b

Hexadecimal Descriptor, 7-4a

Hexadecimal editing, 7-4a

Hollerith constants, 2-2, 2-3,
2-5, 2-10

How to use this book, xii

Implied DO loop, 6-28

INCLUDE statement, 3-21

Increasing maximum record length,
6-6, 6-7

-IMJPUT compiler option, 9-12

Input groups, 6-35, 6-36

Input list, 6-27, 6-29

Input/Output, 12-3, C-7

Input/Output capabil i t ies, 1-3

Input/Output Control System, 1-6

Input/output, data storage, and
file types, 6-1 to 6-40

INQUIRE statement options,
ACCESS=, 6-16, 6-19
BLANK=, 6-17, 6-20
DIRECT=, 6-16, 6-19
ERR=, 6-16, 6-18

Fourth Edition, Update 2

FORTRAN 77 Reference Guide

INQUIRE statement options
(continued)

EXIST=, 6-16, 6-18
FILE=, 6-11, 6-16, 6-18
EORM=, 6-11, 6-16, 6-19
FORMATTED=, 6-16, 6-19
IOSTAT=, 6-16, 6-18, 6-27
NAME=, 6-16, 6-18
NAMED=, 6-16, 6-18
NEXTREO, 6-17, 6-20
NUMBER=, 6-16, 6-18
OPENED=, 6-16, 6-18
RECL=, 6-17, 6-20
SEQUENTIAL=, 6-16, 6-19
UNPORMATTED=, 6-16, 6-20
UNTT=, 6-16, 6-18, 6-27

$INSERT statement, 3-24

Insert statements, 2-4

Integer,
constant expression, 2-2
divides, 12-5, 12-6
editing, 7-4
expression, 2-2

INTEGER data, 2-6, 2-7

INTEJGER*2 data, 2-6, 2-7c, D-l

INTEGER*4 data, 2-6, 2-7c, D-3

Internal files, 6-5

-INTL and INTS compiler options,
9-13

-INTL compiler option, 2-7c

Intrinsic functions,
as arguments, 8-3, 8-4
by category, 8-2
description of, 6-1 to 6-20,

C-6
notes for table of, 8-14 to

8-20
Summary of F77, H-l
tables of, 8-5 to 8-13
use of, 8-1

INTRINSIC statement, 3-19

-IMS compiler option, 2-7c

INTS function, 2-7c

IOCS, 1-6, 6-6, 12-3

IOSTAT option, 6-12

IOSTAT= option, 6-16, 6-27

Key, 6-4

L descriptor, 7-8

-LCASE compiler option, 9-20,
9-23

Libraries,
of subroutines, 8-26
shared, 6-6
unshared, 6-6

Library calls, inefficient, 12-5

Library routines, 2-7

Line format, 2-3, 2-4

Linker, BIND, 10-1 to 10-8

Linking and executing programs,
10-1 to 10-8

LIST statement, 3-24

List-directed I/O,
defined, 6-32
delimiters, 6-32
repeat counts, 6-32, 6-33

-LISTING compiler option, 9-13

Listing control, C-5, C-6

Load sequence, 12-2, 12-3

Fourth Edition, Update 2

INDEX

Logica l ,
conversion, 2-17
data in assignment statement,

4-2
data, short, C-5
edi t ing, 7-8
expressions, 2-15
operators, 2-14, 2-15

LOGICAL data, 2-6, 2-9

LOGICAL*! data, 2-6, 2-9, D-l

L0GICAL*2 data, 2-6, 2-9, D-l

L0GICAL*4 data, 2-6, 2-9, D-l

-LOGL compiler option, 2-9, 9-12

-LOGS compiler option, 2-9, 9-12

Long integer arguments, 8-4

Long integers, 2-7, 2-7c, 2-17,
C-4, C-5

Loops,
ETN compatibility of, 5-13
implied, 6-28
nested, 5-12

-MIN compiler option, 9-14

Main Program, 2-18

-MAP compiler option, 9-14

-M4AEWIDE compiler option, 9-14

-MAXjGRCWTHJPERCENT compiler
option, 9-15

-M^AX_SUB_STATEMENTS_IMsL INE
compiler option, 9-15

-MAXERRORS compiler option, 9-15

Memory allocation, 12-2, 12-3

MIDAS PLUS (Multiple Index Data
Access System), 1-7

Minus (-), 7-10

Mismatched record length on
output, 6-29, 6-30

Multidimensional arrays, 12-1,
12-2

Multiple Index Data Access System
(MIDAS PLUS), 1-7

M3AME= option, 6-16

NAMEL> option, 6-16

Namelist,
block, 3-22
description of, 3-22, 6-27,

6-29
errors when using, 6-38
input, 6-33, 6-34
output, 6-34
restrictions on, 6-39
variables, 3-22

NAMELIST statement, 3-22, 6-33
to 6-38

Nested DO loops, 5-12

-NESTING compiler option, 9-15,
9-16

NEXTREO option, 6-17

NO LIST statement, 3-23

NO-LISTING, 9-14

-NO_ALLOW_PRECONNECTION, 9-5

-N0_BIG, 9-5

-ND_BINARY, 9-6

-N0_DJ3TA!TEMENTf 9-8

Fourth Edition, Update 2

FORTRAN 77 Reference Guide

-NQJXLVAR, 9-7

-NOJDEBUG, 9-7

-NO_D01, 9-7

-NO_ERRLIST, 9-9

-IO_ERRTTY, 9-9

-ND_EXPLIST, 9-9

-MO_E3CCEWMlDjCHARACTER_SET, 9-11

-NO_FRN, 9-11

-NO_ETN_ENTRY, 9-12

-NQJ1AP, 9-14

-ND_NESTING, 9-15

-NOJOFFSET, 9-16

-NOJDPTIMIZE, 12-3

-MO_O7EREL0W, 9-17

-NO_PBECB, 9-19

-ND_PROXJCriON, 9-20

-NO_RANGE, 9-20

-NO_STANDARD, 9-21

-NO_STATISTICS, 9-22

-NO_STORE_CWNER_FIELD, 9-22,
9-23

-NO_XREF, 9-23

Nonnumeric descriptors, 7-8 to
7-12

Number sign (#), 7-11

NUM4BER= option, 6-16

Numeric descriptors, 7-3 to 7-7

0 descriptor, 7-4a

Octal Constants, 2-7a

Octal Descriptor, 7-4a

Octal editing, 7-4a

-OFFSET compiler option, 9-16

On-unit, 1-8

OPEN statement options,
ACCESS=, 6-11, 6-13
ACTION=, 6-12, 6-14
ANYUNTT=, 6-12, 6-15
BLANK=, 6-11, 6-14
ERR=, 6-12, 6-14
FILE=, 6-11, 6-13
FORM=, 6-11, 6-13
IOSTAT>=, 6-12, 6-14
RECL=, 6-11, 6-14
STATUS=, 6-11, 6-13
UNIT=, 6-11, 6-13

OPENED= option, 6-16

Opening a file, 6-7

Operands, types of, 2-10 to 2-12

Operations on a file, 6-9

Operators,
evaluation, 2-14
logical, 2-15, 2-16
order of evaluation, 2-14
relations, 2-15
table of, 2-16
types of, 2-13, 2-15

-OPTIMUZE compiler option, 9-16,
12-6

Optimizing programs, 12-1 to
12-7

Output list, 6-29

-OVERFLOW compiler option, 9-17
to 9-19

Fourth Edition, Update 2

INDEX

PARAMETER statement, 3-16, 12-5

Parameters, 2-10

Parentheses, extra in I/O
statements, C-7

PAUSE statement, 5-17, C-7

-PBECB compiler option, 9-19,
9-20

Plus (+), 7-10

Pointer, 6-2

Positional editing, 7-15

Preconnection, 6-7

Prime ECS, 8-14
(See also Prime Extended

Character Set)

Prime Extended Character Set,
2-2, A-1 to A-15

collating sequence, 8-18, A-6
F77 Programming Considerations,

A-5
legal characters in FORTRAN,

2-2, 2-3
Special Mfeaning of Prime ECS

Characters, A-5
Specifying Prime ECS

Characters, A-2
Table A-1, A-7

Prime extensions,
ACTION= option, 6-11, 6-12,

6-14
alternate return statement

label ($), 8-30
comment format, 2-4
compatibility of DO loops with

FTN, 5-10
compiler control directives,

3-2, 3-23
COMPLEX*16 data, 2-9
data types, 2-5, 2-6
DO WHILE, 5-lla, 5-llb
END DO, 5-llb

Prime extensions (continued)
equivalencing character data,

3-16
-E21TENDED_CHARACrER-SET

compiler option, 9-11
F77, definition of, 1-2
FULL LIST statement, 3-10,

3-24
Hexadecimal constants, 2-7b
Hexadecimal edit descriptor,

7-4a
Hollerith constants, 2-2, 2-10
Hollerith edit descriptor, 7-9
INCLUDE statement, 3-21
initializing data in a type

statement, 3-2
$INSERT statement, 3-10, 3-24
insert statements, 2-4, 2-5
intialization of blank COMMON,

3-16
legal characters, 2-2, 2-3
line format, 2-3
list of, 1-4, 1-5
LIST statement, 3-10
-M4APWIDE compiler option, 9-13
-M ÂXjGROWTH_PERCENT compiler

option, 9-11
-miax_sub_statements_:lnl ine

compiler option, 9-13
-M1AXERRORS compiler option,

9-13, 9-14
namelist directed I/O, 6-33 to

6-38
NAMELIST statement, 3-10, 3-22
NO LIST statement, 3-10, 3-23
octal constants, 2-7a
octal constants in type

statements, 3-7
octal edit descriptor, 7-4a
OPEN statement RECL option for

sequential file access, 6-3
Prime Extended Character Set,

A-1 to A-15
program unit names, 2-18
Q edit descriptor, 7-6
REAL*16 data, 2-8
referencing PMA, 1-6
shifting or truncation of bits,

8-4
variable names, 2-11
variable names in type

statements, 3-19

PRINT statement, 6-25, 6-31, 7-1

Fourth Edition, Update 2

FORTRAN 77 Reference Guide

PRISAM (Prime's Recoverable
Indexed Sequential Access
Method), 1-7

-PRODUCTION compiler option,
9-20

Program compatibility, C-4 to
C-9

Program composition, 2-18, 2-19

Program conversion,
referencing restrictions, C-3
steps for, C-2
three degrees of, C-3

PROGRAM statement, 3-2

Program unit, 2-2, 2-18

Programming examples, F77, B-l
to B-12

Programs, suggestions for
improving, 12-1 to 12-7

Q descriptor, 7-3, 7-6, 7-13

-RANGE compiler option, 9-20

READ statement, 6-26 to 6-28,
7-1

Undformatted I/O, 6-32

REAL data, 2-6, 2-8

Real editing.
Exponential, 7-5
Nonexponential, 7-4

REAL*16 data, 2-6, 2-8, D-4

REAL*16 editing, 7-6

REAL*4 data, D-3

REAL*8 data, 2-6, 2-8, D-4

RECL= option, 6-11, 6-17

Record*, 6-27

Records,
definit ion of, 6-2
endfi le , 6 -2
formatted, 6-2
increasing maximum length,

6-6, 6-7
length mismatch on output,

6-29, 6-30
lengths, fixed, 6-3
lengths, variable, 6-3
skipping, 7-16
unformatted, 6-2

Recursion,
in functions, 8-27
in subroutines, 8-27

Referencing,
arrays, 2-12
functions, 8-22, 8-23
intr insic funct ions, 8-3
seconday entry points, 8-28
statement functions, 8-21
subroutines, 8-24, 8-25

Relational expressions, 2-15

Repeat counts, 6-32, 6-33

Restrictions on F77, 1-5

RESUME command, 10-8

RETURN statement, 8-24, 8-29,
8-30

REWIND statement, 6-23

Routines,
I/O, 2-7c
l i b ra r y, 2 -7c

Runfiles, EPF, 10-1 to 10-8

Fourth Edition, Update 2

INDEX

S descriptor, 7-14

SAM files, 6-3 to 6-5

-SAVE compiler option, 9-20

SAVE statement, 3-19

Scale factors, 7-13

Search Rules Facility,
Establishing Search Rules, G-l
Using [referencing_dir], G-3
Using Search Rules, G-3

Secondary entry points, 8-28,
8-29

Segment, 2-2

Sequential access file, 6-3 to
6-5

SEQUENTIAL= option, 6-16

Shared libraries, 6-6

Short integer arguments, 8-4

Short integers, 2-7c, 2-17, C-4,
C-5

SHORTCALL examples, E-1 to E-5
IMODE, E-4
VMODE, E-1

SHORTCALL Statement, 3-18

Sign control editing, 7-14

-SILENT compiler option, 9-21

Skipping records, 7-16
Slash edit-control descriptor,

C-7

-SOURCE compiler option, 9-21

Source Level Debugger (DBG),
11-1 to 11-11

SP descriptor, 7-14

-SPACE compiler option, 9-21

Space skipping, 7-10, 7-11

Specific functions, 8-3

Specification statements, 3-1 to
3-24

-SPO option, C-8

SS descriptor, 7-14

-STANDARD compiler option, 9-21

Statement functions, 8-21, 8-22

statement labels, 2-4

Statement order in F77, 2-20

Statements,
ASSIGN, 4-6
BACKSPACE, 6-21, 6-22
BLOCK DATA, 3-20, 8-27
CALL, 8-24
CLOSE, 6-15
COMMDN, 3-11, 3-12
compiler control directives,

3-23
CONTINUE, 5-16
DATA, 3-15, 3-16, 12-5
data transfer, 6-25 to 6-33
device control, 6-21 to 6-24
DIMENSION, 3-9
DO, 5-9
DO WHILE, 5-lla, 5-llb
END, 5-18
END DO, 5-llb
ENDFILE, 6-24
ENTRY, 8-28
EQUIVALENCE, 3-13, 3-14
EXTERNAL, 3-17
file control, 6-11 to 6-20
EORMAT, 7-1 to 7-16
FULL LIST, 3-24
FUNCTION, 8-22, 8-23
functions and subroutines,

12-5
GO TO, 5-3
I/O syntax, summary of, 6-40
IF, 5-4 to 5-9

X-15 Fourth Edition, Update 2

FORTRAN 77 Reference Guide

Statements (continued)
IMPLICIT, 3-3
INCLUDE, 3-21
INQUIRE, 6-16 to 6-20
$INSERT, 2-4, 3-24
INTRINSIC, 3-19
LIST, 3-24
NAMELIST, 3-22, 6-33 to 6-38
MO LIST, 3-23
OPEN, 6-11 to 6-14
PARAMETER, 3-16, 12-5
PAUSE, 5-17, C-7
PRINT, 6-25, 6-31, 7-1
PROGRAM, 3-2
READ, 6-26 to 6-28, 7-1
RETURN, 8-24, 8-29, 8-30
REWIND, 6-23
SAVE, 3-19
sequence, 12-4, 12-5
SHORTCALL, 3-18
STOP, 5-17, C-7
storage allocation, 3-11, 3-12
Subroutine, 8-24, 8-25
summary of file operations,

6-9
syntax of, 2-3, 2-4
table of compilation directive

syntax, 3-10
table of specification syntax,

3-10
type statements, 3-4
WRITE, 6-25, 6-29, 6-30, 7-1

Static storage default, C-5

-STATISTICS compiler option,
9-20, 9-22

STATUS= option, 6-11

STOP statement, 5-17, C-7

Storage,
dynamic, C-5
of data, 6-1 to 6-7
s ta t ic , C-5

Storage allocation statements,
COMMON, 3-11 to 3-13
EQUIVALENCE, 3-14
SAVE, 3-19

-STORE_0WNER_FIELD compiler
option, 9-22

Subprogram arguments,
adjustable array dimensions,

8-32
adjustable character arguments,

8-31
adjustable character functions,

8-31
adjustable subprogram elements,

8-31
assumed-size arrays, 8-32

Subprograms, 2-18
as arguments, 8-34, 8-35
block data, 8-27
capabilities of, 1-3
categories of, 8-1
definition of, 2-2, 8-1
functions, 8-22

SUBROUTINE statement, 8-24, 8-25

Subroutines,
libraries of, 8-26
number of arguments, 8-27
referencing, 8-24, 8-25

T descriptor, 7-15, 7-16

Textbooks on FORTRAN 77, xii

-TIM© compiler option, 9-23,
12-6, 12-7

TL descriptor, 7-15, 7-16

TR descriptor, 7-15, 7-16

•type conversion,
arithmetic, 2-17
logical, 2-17

Type Statements, 3-4
character, 3-6
numeric, 3-4, 3-5

Uncompressed format, 6-3

Fourth Edition, Update 2

INDEX

Unconditonal GO TO statements,
5-2, 5-3

Unformatted I/O (See free-format
I/O; PRINT statement; READ
statement; WRITE statement)

Unformatted record, 6-2

UNFORMATTED= option, 6-16

Unit#, 6-26

UNIT= option, 6-11, 6-16, 6-27

Unrepresentable values, 6-30

Unshared libraries, 6-6

-UPCASE compiler option, 9-23

Utility systems,
DBMS, 1-6
FORMS, 1-6
MIDAS PLUS, 1-6
PRISAM, 1-6

Z descriptor, 7-4a

Zed (Z), 7-11

Variable-length records, 6-3

Variables, 2-11

WRITE statement, 6-25, 6-29,
6-30

Unformatted I/O, 6-32

X descriptor, 7-8

-XREF compiler option, 9-23

Fourth Edition, Update 2

READER RESPONSE FORM

DOC4029-4LA FORTRAN 77 Reference Guide Fourth Edition

Your feedback will help us continue to improve the quality, accuracy,
and organization of our user publications.

1. How do you rate the document for overall usefulness?

2. Please rate the document in the following areas:

too few

3. What features did you find most useful?

4. What faults or errors gave you problems?

Would you like to be on a mailing list for Prime's
documentation catalog and ordering information? yes no cur ren t

Name:

Company:

Posi t ion:

Address:

	Front Cover
	Title Page
	i
	Copyright
	ii
	Printing History
	iii
	Contents
	v
	vi
	vii
	viii
	ix
	x
	xi
	About This Book
	xiii
	xiv
	xv
	xvi
	xvii
	xviii
	xix
	xx
	Part I
	Overview
	Chapter 1
	Introduction To F77
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	Chapter 2
	FORTRAN 77 Terms and Concepts
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	Part II
	Prime F77 Language Reference
	Chapter 3
	Specification Statements
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	Chapter 4
	Assignment Statements
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	Chapter 5
	Control Statements
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	Chapter 6
	Input/Output Statements, Data Storage, and File Types
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	Chapter 7
	FORMAT Statements
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	Chapter 8
	Subroutines and Functions
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	Part III
	Working With Prime F77
	Chapter 9
	Compiling Your Program
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	9-22
	9-23
	9-24
	9-25
	9-26
	9-27
	9-28
	Chapter 10
	Linking and Executing Your Program
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	Cja[er 11
	Finding and Correcting Runtime Errors
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	11-7
	11-8
	11-9
	11-10
	11-11
	Chapter 12
	Optimizing F77 Programs
	12-1
	12-2
	12-3
	12-4
	12-5
	12-6
	12-7
	Appendixes
	Appendix A
	Prime Extended Character Set
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	Appendix B
	F77 Programming Examples
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	B-9
	B-10
	B-11
	B-12
	Appendix C
	Converting FTN Programs To F77
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-7
	C-8
	C-9
	Appendix D
	Memory Formats for F77
	D-1
	D-2
	D-3
	D-4
	D-5
	D-6
	Appendix E
	SHORTCALL Examples
	E-1
	E-2
	E-3
	E-4
	E-5
	Appendix G
	The Search Rules Facility
	G-1
	G-2
	G-3
	Appendix H
	Alphabetic Summary of F77 Intrinsic Functions
	H-1
	H-2
	H-3
	H-4
	H-5
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	X-9
	X-10
	X-11
	X-12
	X-13
	X-14
	X-15
	X-16
	X-17
	Survey
	
	

