Prime Computer, Inc.

DOC4029-4LA

FORTRAN 77
Reference Guide

Revision 19.4

FORTRAN 77

Reference Guide

Fourth Edition

by
Evelyn Burns

Updated for Rev. 21.0
by

J. Ornstein and D. Laukaitis

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Master Disk
Revision Level 21.0 (Rev. 21.0).

Prime Computer, Inc.
Prime Park
Natick, Massachusctts 01760

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer, Inc.
Prime Computer, Inc., assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Copyright © 1985 by Prime Computer, Inc., All rights reserved.

PRIME, PRIME, PRIMOS, and the PRIME logo are registered trademarks of
Prime Computer, Inc. DISCOVER, INFO/BASIC, INFORM, MIDAS, MIDASPLUS,
PERFORM, Prime INFORMATION, PRIME/SNA, PRIMELINK, PRIMENET, PRIMEWAY r
PRIMIX, PRISAM, PST 100, Pr25, PT45, PI65, PT200, PW153, PW200, PW250,
RINGNET, SIMPLE, 50 Series, 400, 750, 850, 2250, 2350, 2450, 2550,
2650, 2655, 2755, 6350, 6550, 9650, 9655, 9750, 9755, 9950, 9955, and
995511 are trademarks of Prime Computer, Inc.

PRINTING HISTORY

First Edition (IDR4029) January 1980 for Release 17.0
Second Edition (DOC4029-183) January 1983 for Release 18.3
Third Edition (DOC4029-192) June 1983 for Release 19.2
Fourth Edition (DOC4029-4LA) April 1985 for Release 19.4
Update 1 (UPD4029-41A) August 1986 for Release 20.2

Update 2 (UPD4029-42A) July 1987 for Release 21.0

CREDITS

Editorial: Margaret Hill, Bill Modlin
Project Support: Margaret Taft, Len Bruns
Illustration: Mingling Chang

Production: Judy Gordon

ii

i

PRINTING HISTORY — FORTRAN 77 Reference Guide

Edition Date Number Software Release
First Edition January, 1980 IDR4029 17.0
Second Edition January, 1982 DOCA029-183 18,3
Third Edition June, 1983 DOCA029-192 19.2
Fourth Edition April 1985 DOCA029-4LA 19.4

In document numbers, L indicates loose-leaf. This book is also
available in perfect-bound form, as DOCA029-4FA.

CQUSTOMER SUPFORT CENTER

Prime provides the following toll-free numbers for custamers in the
United States needing service:

1-800-322-2838 (within Massachusetts) 1-800-541-8888 (within Alaska)
1-800-343-2320 (within other states) 1-800-651-1313 (within Hawaii)

HOW TO ORDER TECHNICAL DOCUMENTS

Obtain an order form, a catalog, and a price list from one of the
following:

Inside U.S. Outside U.S.
Software Distribution Contact your local Prime
Prime Computer, Inc. subsidiary or distributor.

74 New York Ave,
Framingham, MA 01701
(617) 879-2960 X2053

iii

ABOUT THIS BOCK

PART I ——- OVERVIEW
1 INTRODUCTION TO F77

Definitions
Fortran 77
New Features in FORTRAN 77

Data Declaration Capabilities

Execution—-time Capabilities

Subprogram Capabilities

Input/Output Capabilities

Prime Extensions to FORTRAN 77
Prime F77 Restrictions
Interface to Other Languages
F77 and Prime Utilities

Forms Management System
(FORMS)

Multiple Index Data Access
System (MIDASPLUS)

Prime's Recoverable Indexed
Sequential Access Method
(PRISAM)

The Conditiom-handling Mechanism

2 FORTRAN 77 TERMS AND CONCEPTS

Definitions

FORTRAN 77 Character Set

Line Format
Comments
Statements
Inserts

Data Types
INTEGER Data
Octal Constants
Hexadecimal Constants
REAL Data
DOUBLE PRECISION Data
REAL*16 Data

. COMPLEX Data

COMPLEX*16 Data
LOGICAL Data
CHARACTER Data

e

Contents

xiii

o 4 B0 it B (0 TR
G BB WWRD NN

&

|

NMNNMNNMI}JNNNNNNMN

Hollerith Constants
Cperands

Constants

Parameters

Variables

Arrays

Referencing Arrays
Expressions

Arithmetic Expressions

Character Expressions

Relational Expressions

Logical Expressions
Type Conversion

Logical Conversion

Arithmetic Conversion

Program Organization in FORTRAN 77

Program Unit
Main Program
Subprograms

Organization Considerations

Size Considerations

PART II —— PRIME F77 LANGUAGE REFERENCE

3 SPECIFICATION STATEMENTS

PROGREM Statement
IMPLICIT Statement
Type Statements
Numeric Type Declaration
Statements
Character Type Declaration
Statements
DIMENSION Statement
COMMON Statement
FQUIVALENCE Statement
DATA Statement
PARAMETER Statement
EXTERNAL: Statement
SHORTCALI, Statement
SAVE Statement
INTRINSIC Statement
BLOCK DATA Statement
INCLUDE Statement
NAMELIST Statement
Compiler Control Directives
NO LIST Statement
LIST Statement
FULL LIST Statement
SINSERT Statement

vi

2-10
2-10
2-10
2-10
2=11
2-11
2~12
2=13
2=13
2-14
2-15
2-15
2-17
2=L7
2-17
2-18
2-18
2-18
2-18
2-19
2-19

4 ASSIGNMENT STATEMENTS

Arithmetic Assignment Statement 4
Logical Assignment Statements 4
Character Assignment Statement 4-
Assign Statement 4

5 CONTRQL STATEMENTS

GO TO Statements
Assigned GO TO Statement
The Computed GO TO Statement
Unconditional GO TO Statement
IF Statements
Arithmetic~IF Statement
Logical-IF Statement
Block—-IF Structure
DO Statement
Execution of a DO Statement
Execution of the Range
of DO Statements 5-11
Iteration Control 5-11
Nested Loops and Transfer

|
> WM

| 11
HWwoyU
o

|

U‘ILHU'IU'IU'!L'J‘ILHU'lU"IU'l

of Control 5-12
Restrictions on Transfer

of Control 5-12
FIN Compatibility of DO Loops 5-13
DO WHILE Statement 5-14
Execution of a DO WHILE Statement 5-15
Nested DO WHILE Loops 5-16
END DO Statement 5-16
CONTINUE Statement 5-16
STOP Statement 5-17
PAUSE Statement 5-17
FND Statement 5-18

6 INPUT/QUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

F77 Data Storage 62
Types of Records 6-2
Record Lengths 6-3
Types of File Access 6-3
Types of Files 6-4
Internal Files 6-5

Editing F77 Files 6-5

Increasing Maximum Record Length 6—6

Files and Programs 6-7
Assigning a Device 6-7
Opening a File on a File Unit 6-7

File Operations 6-10

File Control Statements 6-11
OPEN Statement 6-11
CLOSE Statement 6-15

INQUIRE Statement 6-16

vii

Device Control Statements
BACKSPACE Statement
REWIND Statement
ENDFILE Statement

Data Transfer Statements
How a Data Transfer Statement

Works
READ Statement
WRITE Statement
PRINT Statement

List—directed I/0
Delimiters
Repeat Counts

Input/Output Errors

Namelist-directed 1/0
Namelist Input
Namelist Output
Input Groups
Inputting Arrays With Namelist
Errors When Using Namelist
Restriction on Namelist

Summary of Statement Syntax

7 FORMAT STATEMENTS

Format Statement
Format and I/0 List Interaction
Format List Rescanning
Field Descriptors
Numeric Descriptors
Hexadecimal and Octal
Field Descriptors
Nonnumeric Descriptors
Edit-control Descriptors
Scale Factors (P)
Sign Control Editing (SP,SS,S)
Blank Control Editing (BN,BZ)
Positional Editing (T)
Conditional Output
Record Skipping

8 SUBROUTINES AND FUNCTIONS

F77 Intrinsic Functions
Intrinsic Function Tables
Referencing an Intrinsic
Function

Generic and Specific Functions

Intrinsic Functions as
Arguments

Long and Short Integer
Arguments to Intrinsic
Functions

viii

6-21
6-21
6-23
6-24
6-25

6-25
6-26
6-29
6-31
6-32
6-32
6-32
6-33
6-32
6-33
6-34
6-35
6-36
6-38
6-38
6-39

-1
7-2
7-3
=3
7-3

7-4a
7-8

7-12
7-13
7-14

.

e

-

Statement Functions

External Functions

Subroutines
Using the SUBROUTINE Statement
Subroutine Libraries
Recursion
Number of Arguments

Block Data Subprogram

Secondary Entry Points

Alternate Returns

Subprogram Arguments
Adjustable Subprogram Elements
Adjustable Character Functions
Adjustable Character Arguments
Assumed-size Arrays
Adjustable Array Dimensions
Boundary Spanning Arrays as

Arguments

Character Arrays as Arquments
Subprograms as Arguments

PART IIT — WORKING WITH PRIME F77

9 COMPILING YOUR PROGRAM

Compiling an F77 Program
Invoking and Specifying
Options to the Compiler
Compiler Error Messages
End-of-Compilation Message
Compiler Options

10 LINKING AND EXECUTING YOUR PROGRAM

BIND
Using BIND
Using BIND Interactively
Using BIND From the Command
Line
Basic BIND Commands
RESUME

11 FINDING AND CORRECTING RUNTIME ERRORS

How to Use the Debugger
Entering the Debugger

Running Your Program Within the
Debugger

Looking at Your Source Program

Stopping Execution of Your
Program

Continuing Execution of Your
Program

ix

Examining and Modifying Data
Using the : Command
Using the TYPE Command
Using the LET Command
Value Tracing
Getting HELP
How to Leave the Debugger
For More Information...

12 OPTIMIZING F77 PROGRAMS

Multidimensional Arrays
Loading and Memory Allocation
Function Calls

Input/Output

Statement Sequence

Parameter Statements

Library Calls

Integer Division

Compiler Options

Conclusion

APPENDIXES
A PRIME EXTENDED CHARACTER SET

Specifying Prime ECS Characters
Direct Entry
Octal Notation
Character String Notation
Program Example
Special Meanings of Prime ECS
Characters
F77 Programming Considerations
Prime Extended Character Set Table

B F77 PROGRAMMING EXAMPLES

Sample Program #1
Sample Program #2

C (C(ONVERTING FTN PROGRAMS TO F77

Program Conversion
Degrees of Program Unit
Conversion
Using an FIN Program Unit in an
F77 Program
Producing an F77-compatible
Program Unit
Optionally Acceptable FIN
Constructs
Reimplemented FIN Constructs

11=7
1i-7
11-8
11-9
11-9
11-10
11-11
11-11

12-1
12-2
12-3
12-3
12-4
12-5
12-5
12-5
12-6
12~7

A-2
A-2
A-2
A-3
A-4

A-5

A-5
A-6

B-1
B-14

c-2

Cc-3

c-4

C-4
C-5

Unsupported FIN Constructs
Obsolete FIN Constructs
Producing an F77 Standard
Program Unit
Elimination of Optionally
Acceptable Constructs

MEMORY FORMATS FOR F77

SHORTCALL EXAMPLES
V-Mode Examples
The V-Mode Programs
Compiling, Linking, and Executing
the V-Mode Programs
I-Mode Examples
The I-Mode Programs
Compiling, Linking, and Executing
the I-Mode Programs

ANSI STANDARD VIOLATIONS FLAGGED
BY —STANDARD OPTION

THE SEARCH RULES FACILITY
INCLUDE Files and the Search Rules
Facility
Establishing Search Rules
Using Search Rules
Using [referencing dir]

ALPHABETIC SUMMARY OF F77 INTRINSIC
FUNCTIONS

INDEX

xi

8¥
C-8

F-1

G-1
G-1
G-3
G-3

About
This Book

This document is a programmer's guide to the FORTRAN 77 language as

- implemented on the Prime system. You are expected to be familiar with
some version of FORTRAN, and with programming in general, but not
necessarily with Prime computers.

If you are familiar with programming but not with FORTRAN, you should
consult an appropriate FORTRAN 77 textbook. Here are some examples of
textbooks you may find helpful:

Davis, Gordon B., Hoffman, Thomas R., FORTRAN 77: A Structured
Disciplined Style, McGraw-Hill, Inc., New York, 1983

.

Katzan, Harry, FORTRAN 77, Van Nostrand Reinhold Company, New
York, 1979

Wagener, Jerrold L., Principles of FORTRAN 77 Programming, John
Wiley and Sons, New York, 1980

HOW TO USE THIS BOOK

This bock is divided into three parts and a set of appendixes:

xiii

PART I —— OVERVIEW OF FORTRAN 77 AND PRIME F77

Chapter 1 describes the different parts of an F77 statement such
as symbols, constants, variables, arrays, etc.

Chapter 2 gives you general information concerning FORTRAN and
introduces basic facts needed before writing FORTRAN programs on
Prime equipment.

PART II —— PRIME F77 LANGUAGE REFERENCE

Chapter 3 describes specification statements, which define
characteristics of symbols used in the program, such as data
types, array dimensions, etc.

Chapter 4 describes assignment statements, which define values
used in the program.

Chapter 5 describes control statements, which transfer control
from one point in the program to another.

Chapter 6 describes F77 I/0 statements, data storage, and file
types.

Chapter 7 describes the FORMAT statements used in conjunction
with formatted I/0 statements.

Chapter 8 discusses subprograms, both user-written and all the
intrinsic functions that are supplied by the F77 compiler.

PART III —- WORKING WITH PRIME F77

Chapter 9 describes how to invoke and use the F77 compiler.

Chapter 10 describes how to use the PRIMOS commands BIND and
RESUME to link and execute F77 programs.

Chapter 11 describes how to locate errors that occur during
compile, load, or execution time using Prime's Source Level
Debugger, DBG. (This is a separately priced product.)

Chapter 12 presents programming considerations and procedures
for improving the performance of F77 programs.

xiv

.

Appendizxes

e Appendix A lists the Prime Extended Character Set, which F77
uses.

e Appendix B contains two F77 programming examples.

e Appendix C describes the techniques required for converting
Prime FTN programs to F77.

e Appendix D illustrates how Prime F77 data types are represented
in memory.

e Appendix E contains V-mode and I-mode programs illustrating the
use of the SHORTCALL statement.

e Appendix F contains the violations of the ANSI Standard that are
flagged by the —STANDARD compiler option.

e Appendix G describes the use of Search Rules Facility in
conjunction with INCLUDE and SINSERT statements.

e Appendix H contains an alphabetic summary of the F77 Intrinsic
Functions.

RELATED DOCUMENTS

In addition to the FORTRAN 77 Reference Guide, there are several books
describing other Prime utilities that will help you with your
programming on Prime equipment. These documents are described below.

Prime User's Guide

Instructions for creating, loading, and executing programs in Prime
FORTRAN 77 or any Prime langquage, plus extensive additional information
on Prime system utilities for programmers, are found in the Prime
User's Guide. Little general information about using the Prime
computer system is presented here. The user's guide and this reference
guide are complementary documents. Both are essential for programming
on Prime machines.

FORTRAN 77 Programmer's Companion

The FORTRAN 77 Programmer's Companion is a pocket-size guide that
contains a summary of extracts from the Reference Guide. Included are
language statement formats, compiler options, data tables, functions,
and reference tables.

FORTRAN Reference Guide

The FIN language is described in the FORTRAN Reference Guide. Those
involved with converting programs from FIN to F77 should have a copy of
that gquide, since it contains some information that applies to FIN hut
not F77. Such information is not reiterated in this quide. See
Appendix C for information on the conversion of FIN programs to F77.

New User's Guide to EDITOR and RUNOFF

EDITOR is Prime's line-oriented text editing system. RUNOFF is a text
processor for formatting text. The New User's Guide to EDITOR and
RUNOFF provides complete information on these utilities.

EMACS Primer and EMACS Reference Guide

EMACS, Prime's screen editor, can also be used to enter and modify
source code and text files. The Primer is a user's guide designed for
people with little or no experience with screen editors. The Reference
Guide describes the full use of the screen editor. EMACS is a
separately priced product.

Subroutines Reference Guide Series

This 4-volume series documents the PRIMOS operating system and
application—level subroutines for advanced programmers who wish to
incorporate them into their programs.

Programmer's Guide to BIND and EPFs

This document introduces BIND, Prime's new linking utility for creating
Executable Program Formats (EPFs). The Programmer's Guide to BIND and
EPFs contains a complete dictionary of all BIND commands as well as a
dictionary of EPF-related PRIMOS commands and new subroutines that
apply to EPFs. It also provides a discussion of programming
restrictions and limitations with EPFS and how to build an EPF library.

Advanced Programmer's Guide Series

The Advanced Programmer's Guide series provides an in-depth discussion
of the new command environmment available with EPFs. It also provides a
detailed description of the linking utility, BIND, that is used to
create these dynamic runfiles.

Assembly Language Programmer's Guide

This document contains information that you will need to write programs
in the Prime Macro Assembler (PMA) language.

Guide to Prime User Documents

This document contains a complete listing of books currently available
for Prime products. It includes information on what each book
contains, what product the book documents, when and if the book was
updated, and how to order Prime documents.

PRIMDS Commands Programmer's Companion

This pocket-size companion contains a brief statement of format and
usage for all PRIMOS user commands.

Source Level Debugger User's Guide

This book describes the use of Prime's interactive debugging product,
DBG. The Source Level Debugger is a separately priced product used for
locating errors that occur upon execution of your program. This book
explains the oconcepts, conventions, and use of the Debugger. A
complete list and explanation of all Debugger commands is included.

The ANSI Standard

The definitive reference for FORTRAN 77 is ANSI X3.9-1978 Programming
Lanquage FORTRAN. FEvery installation that uses FORTRAN 77 extensively

should have a copy of this standard, which may be obtained £from
American National GStandards Institute, 1430 Broadway, New York, NY,
10018.

Other Sources of Information

In addition to the documents 1listed above, please oonsider the
following sources when looking for information about the F77 compiler:

® The Software Release Document, also called an MRJ, released at
each software revision. This document contains a summary of new
features and changes in Prime's user software.

® Prime's online HELP files. Information on PRIMOS commands is
displayed at your terminal, including a cumulative 1list of
manuals, updates, etc.

xvii

PRIME DOCUMENTATION CONVENTIONS

The following conventions are used in command formats,
and in examples throughout this document.
statement formats show the syntax of commands,
statements, and callable routines.
these commands,

formats,

statements,

Examples

statement
Command and
program language

illustrate the uses of
and routines in typical applications.

Terminal input may be entered in either uppercase or lowercase.

Convention

UPPERCASE

Abbreviations

lowercase

Underlining
in
Examples

Brackets
[]

Braces

{1}

Explanation

In command formats, words in
uppercase indicate the actual
names of commands, statements,
and keywords. They can be
entered in either uppercase or
lowercase.

If a conmand or statement has
an abbreviation, it is
indicated by underlining, or
in some cases, the shortest
acceptable form of the command
is shown.

In command formats, words
in lowercase indicate items
for which the user must.
substitute a suitable value.

In examples, user input is
underlined but system prompts
and output are not.

Brackets enclose a list of
one or more optional items.
Choose none, one, or more of
these items.

Braces enclose a vertical
list of items. Choose one
and only one item.

xviii

Example

SLIST

LOGQUT

Abbreviation: LO

LOGIN user-id

OK, stat units ey

USR=LAURAJ ONO

NO FILE UNITS OPEN

CK,

SPOCL: -LIST
-CANCEL

CLOSE | filename
ALT,

PN

Ellipsis

Parentheses

()

Hyphen

(CR)

An ellipsis indicates that item-x[,item-y]...
the preceding item may be

repeated.

In command or statement DIM array (row,col)

formats, parentheses must be
entered exactly as shown.

Wherever a hyphen appears in SPOCL, —LIST
a command line option, it is
a required part of that option.

The (CR) symbol indicates a
single carriage return, which is
generated by hitting the RETURN
key on most terminals.

ADDITIONAL DOCUMENTATION CONVENTIONS

Convention

Shading

Explanation Example

Shading around a section of REAL*16
text indicates a Prime

extension to or restriction

on the ANSI standard.

Filename conventions

Convention

filename. language
or filename

filename.BIN
or B_filename

filename,LIST
or I_filename

filename.HIN

Explanation Example

Source file MYPROG. F77
Binary (object) file MYPROG. BIN
Listing file MYPROG. LIST
Saved executable runfile MYPROG. RUN

xix

Filenames may be comprised of 1 to 32 characters inclusive, the first
character of which must be nonnumeric. Names should not begin with a
hyphen (=) or underscore (_). Filenames may be composed only of the
following characters: A -2, 0-9, _#$&-*, and /.

Note

On some devices, the underscore (_) may print as backarrow (=).

PRIME ADDRESS SPACE MEASUREMENT UNITS

® byte — 8 bits; 1 Prime ECS character.

e halfword — a unit of address space two bytes (16 bits) in
size.

e word, fullword — a unit of address space four bytes (32
bits) in size.

PART I

Overview

Introduction to F77

DEFINITIONS

There are many versions of FORTRAN, In this guide, you will find the
following terms to describe them:

Term Definition

FORTRAN A mathematically oriented programming language
developed by IBM in the 1950s.

FORTRAN 66 A standardized FORTRAN, defined in the American
National Standards Institute (ANSI) publication
ANSI X3.9-1966.

FORTRAN IV Any version of FORTRAN that is based on ANSI
¥3.9-1966 and contains extensions developed by a
particular computer manufacturer.

FIN Prime FORTRAN IV

FORTRAN 77 A new standardized FORTRAN, defined in the ANSI
publication ANSI X3.9-1978.

1-1 Fourth Edition

FORTRAN 77 Reference Guide

77 Prime's extended version of FORTRAN 77. The F77
language conforms fully to ANSI X3.9-1978. A

Certain FORTRAN-specific terms used in this introduction are defined at
the beginning of Chapter 2.

FORTRAN 77

In 1978, ANSI published ANSI X3.9-1978 Programming Language FORTRAN,
This standard defines a new version of FORTRAN, called FORTRAN 77. The
new FORTRAN includes and standardizes nearly all the useful extensions
to FORTRAN 66 developed by individual manufacturers. The result is a
comprehensive, well-defined, and powerful language.

NEW FEATURES IN FORTRAN 77

FORTRAN 77 provides many capabilities additiomal to those of
FORTRAN 66. Some of them have been used in nearly all manufacturers'
versions of FORTRAN IV, but have not previously been defined in any
standard, Many of them were incorporated into FIN on the basis of
preliminary documents released by BANSI, to facilitate the eventual
conversion of FIN programs to F77.

The features available in FORTRAN 77 but not in FORTRAN 66 are as
follows.

Data Declaration Capabilities

® A statement to name the main program (PROGRAM statement)

e An implicit type-rule for default typing of data items by first
letter (IMELICIT statement)

¢ Named constants (PARAMETER statement)

e A CHARACTER data type

® Arrays with up to seven dimensions

@ Explicit lower bounds for array dimensions

e Array bounds with negative, 0, or positive values

e Integer constant expressions in array-bound specifications

Fourth Edition 1-2

INTRODUCTION TO F77

Execution—-time Capabilities

Operations to concatenate and extract substrings from CHARACTER
data

Use of an array name, character substring, or implied-DO list in
a DATA statement

Use of integer expressions (rather than just integers) for array

subscripts, selection values for computed GO TOs, and file units
referred to in BACKSPACE, ENDFILE, and REWIND statements

Use of integer, real, or double precision expressions for
DO-loop and implied-DO index and control values

DO and implied DO loops that may execute zero times and have
negative incrementation values

A block-IF statement, with subsidiary ELSE IF, ELSE, and END IF
statements, for conditional execution of blocks of statements

Use of a format statement label in an ASSIGN statement

Use of decimal digits or a character string in a PAUSE or STOP
statement

Subprogram Capabilities

Multiple entry points to subprograms
Alternate returns in subroutines

Differentiation between external (user-supplied) and intrinsic
(built-in) functions

Generic names for intrinsic functions
Functions with no arquments

More than one block data subprogram

Input/Output Capabilities

Direct—access files
List—directed I/0

Internal (storage-to-storage) formatted data transfer

1-3 Fourth Edition

FORTRAN 77 Reference Guide

e Statements to open and close files, and to inquire about the
status of a file

e Additiomal edit-control descriptors for formatted I/0, such as
sign oontrol, blank editing, and tabbing

PRIME EXTENSIONS TO FORTRAN 77

Unextended FORTRAN 77 already includes features to perform nearly every
programming task for which the FORTRAN language is appropriate. Prime
has avoided extending its FORTRAN 77 unnecessarily, since needless
extensions would serve mostly to reduce compatibility between F77 and
other versions of FORTRAN 77.

Prime has extended its FORTRAN 77 for the following reasons:
@ To provide added power and convenience of use to the language

e To take advantage of particular features of the Prime ocomputer
system '

® To provide the maximum possible ocompatibility with FIN, and
substantial compatibility with IBM and other manufacturers'
versions of FORTRAN IV. See Appendix C for information on the
conversion of FIN programs to F77.

The Prime extensions of greatest interest to a new F77 user are listed
below. All Prime F77 extensions are described in detail at appropriate
places later in this guide. Throughout this book shading has been used
to indicate Prime F77 extensions. The extensions are:

e Variable and array names may have up to 32 characters, my
contain lowercase letters, and may contain the characters "s$"
and n—n.

e Comments may appear anywhere in a statement.

. Precision specifications for the FORTRAN data types are

provided. REAL*16 (quadruple floating point precision),

(OMPLEX*16, INTEGER*2, LOGICAL*2, and LOGICAL*l data types have
been added. : - _'

® Extended intrinsics to deal with the extended data types are

provided,
@ Octal constants are accepted in F77 source text,
e Data may be initialized in a type-declaration statement.

e CHARACTER and non—CHARACTER data may be equivalenced and may
coexist in the same COMMON block.

Fourth Edition 1-4

INTRODUCTION TO F77

e All OOMMN block data is static. Blank @MDN may be
initialized,

e IBM syntax for direct-access READs and WRITEsS is accepted.
® Recursion is permitted in subroutines, though not in functions.

e The B field descriptor for formatting business data (similar to
PICTURE formatting in QOBOL and PL/I) is provided.

® Files can be autamatically inserted into the source file by the
compiler.

There are various other extensions that allow certain FIN constructs,

which are not standard in FORIRAN 77, to be accepted by the F77
compiler. These are described in Appendix C.

PRIME F77 RESTRICTIONS

The segmented nature of the Prime virtual memory architecture imposes a
few restrictions on F77 programs. None of these are contrary to the
BANSI standard or need interfere with program design.

e The executable code (exclusive of data storage) for a program
unit may not occupy more than one segment (128K bytes).

® No program unit may have more than one segment of local static
storage. (For additiomal static storage, move some of the data
to a COMMDN block.)

e No program unit may have more than one segment of dynamic
storage. (Make the excess static.)

® No data item in a COMMDN block may be split across the boundary
between two segments. Methods for complying with this rule are
described under COMMON Statement in Chapter 3.

INTERFACE TO OTHER LANGUAGES

Since all Prime high-level languages are alike at the object-code
level, and since all use the same calling conventions, object modules
produced by the F77 compiler can reference and be referenced by modules
produced by the FIN, (OBOL, PASCAL, or PL1G compilers, provided that
certain restrictions are observed:

e All I/O routines must be written in the same language.
® There must be no conflict of data types for wvariables being

passed as argquments. For example, an INTEGER in FORTRAN 77
should be declared as FIXED BINARY in PL/I. See Appendix D for

1-5 Fourth Edition

FORTRAN 77 Reference Guide

a description of F77 data storage formats, For detailed
information on passing arquments from one language to another,
see the Subroutines Reference Guide for Rev. 19 and higher.

e Modules compiled in 64V, 32I, or 32IX mode cannot reference or
be referenced by modules compiled in any R mode. Modules in 64V
or 32I may reference each other if they are otherwise
compatible,

A few special restrictions apply when F77 and FIN modules reference
each other. These are discussed in Appendix C.

F77 program units can also reference PMA (Prime Macro Assembler)
routines, and vice versa., For information, see the Assembly Language
Programmer's Guide.

F77 AND PRIME UTILITIES

Prime offers four major utility systems for use in your programming.
These are:

e Data Base Management System (DBMS)

e Forms Management System (FORMS)

@ Multiple Index Data Access System (MIDASPLUS)

® Prime's Recoverable Indexed Sequential Access Method (PRISAM)
For complete information on any of these utilities, see the appropriate

reference quide. Following is a brief description of FORMS, MIDASPLUS,
and PRISAM.

Forms Management System (FORMS)

The Prime Forms Management System (FORMS) provides a convenient method
of defining a form in a language specifically designed for such a
purpose. These forms may then be implemented by any applications
program that uses Prime's Input/Output Control System (IOCS), including
programs written in F77. Applications programs communicate with FORMS
through input/output statements native to the host language. Programs
that currently run in an interactive mode can easily be converted to
use FORMS,

FORMS allows cataloging and maintenance of form definitions available
within the computer system. To facilitate use within an applications
program, all form definitions reside within a centralized directory in
the system. This directory, under control of the system administrator,
may be easily changed, allowing the addition, modification, or deletion
of form definitions.

Fourth Edition 1-6

INTRODUCTION TO F77

The interface of F77 with FORMS is identical to that of FIN., For more
information sece the FED User's Guide (IDR4940).

Multiple Index Data Access System (MIDASPLUS)

MIDASPLUS is a system of interactive wutilities and high-level
subroutines enabling the use of index-sequential and direct-access data
files at the applications level. Handling of indexes, keys, pointers,
and the rest of the file infrastructure is performed automatically for
you by MIDASPLUS. Major advantages of MIDASPLUS are:

@ Construction of large data files

e Efficient search techniques

e Rapid data access

e Compatibility with existing Prime file structures

e Ease of building files

e Primary key and up to 19 secondary keys possible

@ Multiple user access to files

e Data entry lockout protection

e Partial/full file deletion utility
The interface of F77 with MIDASPLUS is identical to that of FIN.

See the MIDAS User's Guide (IDR4558) and the MIDASPLUS PRIME TECHNICAL
UPDATE (PTU98) .

Prime's Recoverable Indexed Sequential Access Method (PRISAM)

PRISAM is a data management software system designed to provide
solutions to users who require autamatic recovery, simple file
structures and strong performance in a transactional multiuser
enviromment, Major features of PRISAM are:

e Manages sequential, indexed, and relative files

e Supports user defined and mixed transactions

e Provides for recovery from system halts

e Provides for media failure recovery

1-7 Fourth Edition

FORTRAN 77 Reference Guide

e Provides for software error recovery
e Allows up to 24 keys per file
e Permits concatenated keys

For more information, see the PRISAM User's Guide (DOC7999-2LA).

THE QONDITION-HANDLING MECHANISM

When an error occurs during execution of a program, PRIMDS responds by
raising a condition. For each type of error, a corresponding condition
exists,

When a condition is raised, PRIMIS activates the condition-handling
mechanism., The condition handler notes what oondition exists, then
calls an error-handling routine known as an "on-unit" to deal with the
error that has occurred.

PRIMDS supplies a default onm-unit for each condition. You can specify
your own response to a condition by supplying an on-unit of your own.
When a condition occurs for which an onmunit exists that you have
supplied, the actions specified in the omrunit will be taken, rather
than those specified in the PRIMOS default om-unit.

Information on the system default on-units and the method for
substituting your own on-units is contained in the Prime User's Guide.
For complete information on the condition handler, see the Subroutines
Reference Guide.

Fourth Edition 1-8

DEFINITIONS

Throughout this gquide,

FORTRAN 77 'Terms

and Concepts

several terms are frequently used. You should

be aware of their exact meanings if discussions using them are to be
understood correctly. You should also be familiar with the text
conventions explained in ABQUT THIS BOOK. These terms are:

Term

Actual Arqument

Arithmetic Expression

Character Expression

Definition

A data item passed to a subprogram.
Actual arguments appear in the
arqument list of a subroutine CALL
statement or a function reference.

Any expression which evaluates to
type INTEGER, REAL, DOUBLE PRECISION,
REAL*16, or COMPLEX.

A single item of type CHARACTER or
the concatenation of any number of
such items. Substrings and
references to CHARACTER functions are
permitted. Trailing blanks are of no
significance in a character
expression.

2-1 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Durmy Argument

Fixed-Length
Character Expression

Integer Expression

Integer Constant
Expression

Program Unit

Segment

Subprogram

FORTRAN 77 CHARACTER SET

A variable or array name appearing in
the header statement or an ENTRY
statement of a subprogram. When the
subprogram is invoked, each dummy
argument is associated with the
actual argument whose name appears in
the corresponding position in the
CALL statement or function reference.

A character expression in which no
operand is a dummy argument with an
adjustable(*) length specification.

Any expression which evaluates to
type INTBEGER, either directly or
after type conversion via the
functions INTS, INTL, or INT.

Any expression consisting only of
integer constants and named integer
constants with arithmetic operators
and parentheses.

A main program, external function,
subroutine, or block data unit.

A 128K-byte block of address space. -

Any program unit except a main
program.

As of PRIMOS Revision 21.0, FORTRAN 77 character strings may contain
any character in the Prime Extended Character Set (Prime ECS), which
contains the ASCII-7 character set as a proper subset.

In FORTRAN 77 program source statements, the valid characters are a
subset of Prime ECS, as follows:

e The 26 uppercase letters:
A,B,C,D,E,F,G,H,I1,J,K,L,M,N,0,P,Q,R, 5, T, U, V, W, X, Y, 2

e The 26 lowercase letters (F77 Extension): :
~ a,by c,d,e,f,9,h,i,j.k,1,mn,0,P, A L,S,E U,V WX YrZ

e The 10 digits: 0,1,2,3,4,5,6,7,8,9

Fourth Edition, Update 2 2-2

.

PN

FORTRAN 77 TERMS AND CONCEPTS

e These 13 special characters:

I

equals

' single quote (apostrophe)
colon

plus

minus

asterisk

slash

left parenthesis

right parenthesis

comma

decimal point

dollar sign

underscore (F77 extension. Backarrow on some terminals.)

B v Sk | e

|

® Blanks or spaces

For the complete list of the Prime Extended Character Set that F77
supports, refer to Appendix A.

Note

ED, the Editor, interprets the backslash (\) as a logical
tab. 1If you wish to make use of the Prime ECS backslash
character in a file you are editing with ED, you must define
another character as your logical tab.

Blanks in character and Hollerith constants and in S$INSERT statements
are treated as character positions. Elsewhere in FORTRAN 77 source
text, blanks have no meaning and can be used as desired to improve
program legibility. Lowercase letters are mapped to uppercase (except
within Hollerith and CHARACTER constants) unless the program is
compiled with the -LCASE option. Keywords must be in uppercase if
-LCASE is specified. For the collating sequence, see Appendix A.

LINE FORMAT
Each program line is a string of 1 to 72 characters. Each character
position in the 1line is called a column. Columns are numbered from
left to right starting with 1. There are three types of lines:

e Comments

® FORTRAN 77 statements (and their continuations)

® Insert statements
In all line types, columns 73-80 are available for line order sequence

nl;mb&:s or other identification. (Usage is optiomal.) These columns,
like comments, are ignored by the compiler, but are printed in the

2-3 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

program listing.

Comments

Comment lines are identified by the letter "C" or an asterisk in column
1. The remainder of the lire may contain anything. A comment in
columns 2 through 5 will cause the compiler to issue an error message.
If you place a "C" or an asterisk in column 6, the compiler will
interpret this as a continuation character. A comment line is ignored
by the compiler, except that it is printed in the source listing. A
comment line is not a statement. It provides a mechanism for you or
someone else to better understand what your program is attempting to
accomplish.

Startlng from column 7 onward, use the follo«ung format to place a

comment 1n your prograw
'/‘* coment */

The end of the lme terminates the conunent and makes the */
‘unnecessary. A comment within a character strlng w1ll be treated as
part of the character string.

Statements

In the first line of a statement, columns 1-5 are reserved for the
statement label. Any statement may have a label between 1 and 99999
affixed to it. Blanks and leading zeros are ignored. Column 6 must be
a blank or a zero. Columns 7-72 contain the statement. The statement
may begin with leading blanks, to make the program easier to read.

In the continuation of a statement, columns 1-5 must be blank, column 6
may be any character except 0 or a blank, and the statement
continuation is in columns 7-72. There may be at most 19 continuation
lines.

Inserts

FTI allcms flles to be mcluded autcmatlcally mto the oomp:.latlon
‘stream, via the insert statement. An insert statement consists of the
keyword SINSERT beginning in column 1, followed by the pathname of the
file to be inserted. See SINSERT Statement in Chapter 3.

Fourth Edition, Update 2 2-4

N

FORTRAN 77 TERMS AND CONCEPTS

DATA TYPES
With the exception of the CHARACTER data type, a new feature of
FORTRAN 77, the FORTRAN 66 and FORTRAN 77 data types are the same.
Since you are expected to be familiar with some version of FORTRAN IV
(extended FORTRAN 66), only highlights and Prime extensions of the
FORTRAN 77 data types are discussed in the following sections. The
CHARACTER and INTEGER data types are discussed in more detail. Each
data type is illustrated with several constants of that type.
The seven major data types that exist in Prime F77 are:

® INTEGER

e REAL

e DOUBLE PRECISION

e REAL*16

e (OMPLEX

e LOGICAL

e CHARACTER
Each of these may exist in any of four forms:

® Constant

® Parameter

® Variable

® Array

In addition, there are statement labels and Hollerith constants. Some
subtypes exist, differing from each other only in storage size.

Table 2-1 lists the seven data types available in F77.

2-5 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Table 2-1
F77 Data Types

Type Bytes Range
INTEGER 2 or 4 Same as for INTEGER*2 or
INTEGER*4. (See Note.)
INTEGER*2 2 —(2*%*15) to (2**15-1)
(short integer) Decimal -32768 to 32767
e Octal
0'100000' to O'77777'
Hexadecimal :
%'8000' to Z'TFFF'
INTEGER*4 4 —(2*%3]1) to (2**31-1)
(long integer) Decimal
-2147483648 to 2147483647
Octal
0'20000000000' to
OLI7T 1777
Hexadecimal
Z'80000000' to 7'7FFFFFFF'
REAL 4 + (10**-38 to 10**38)
(REAL*4)
DOUBLE PRECISION 8 + (10**%-9824 to 10**9824)
(REAL*8)
REAL*16 16 + (10**-9824 to 10**9824)
COMPLEX 4+4 Each component has same
(COMPLEX*8) range as REAL
COMPLEX*16 8+8 Each component has same
i : ~ range as DOUBLE PRECISION
LOGICAL 2 or 4 Tor F
LOGICAL*4 4 ToF F
LOGICAL*2 20 T or B
LOGICAL*1 1 Tor F
CHARACTER 1 to 32767 1 to 32767 characters
Statement Label 2or 4 1 to 99999
Hollerith Varies 1 to 256 characters
Fourth Edition, Update 2 2-6

.

FORTRAN 77 TERMS AND (QONCEPTS

INTEGER Data

An INTEGER data item represents an integer exactly. Integers are
always written without a decimal point. An integer constant may be
represented in decimal or octal form. (Octal form is an F77

‘extension.)

Here are some examples of INTEGER data items:

Decimal Octal

-204 —:314 (same as :37777777464)
0 =0

8 110

1911 23567

F77 supports two integer subtypes: |INTEGER*2 (short) and INTEGER*4
(Iong). If a variable is declared as an INTEGER with no *(size)
specified, or takes on the type INTEGER by default, the variable will
either be INTEGER*4 if the program is oompiled with -INTL (the
default), or INTEGER*2 if it is compiled with -INTS.

Integer constants compiled with the -INTL option (the default) will
become INTEGER*4, With the use of the -INTS option, they become
INTEGER*2 umless:

e Their magnitude lies outside the range -32768 to +32767 or is
greater than :177777.

® Their representation, including leading zeroes, contains more
than 5 decimal or 6 octal digits. For example:

30 short integer constant (under -INTS)
000030 long integer constant (always)

The following rules apply to the use of long and short integers within
a program:

e They are interchangeable and may be mixed freely in expressions
as long as short integers are not assigned values outside their
range, A value ocutside of the range will result in an error
message or indeterminate results.

o Integer arquments that are supplied to preexisting library and
I/0 routines must be of the type they expect. For example, if
the library routine expects an INTEGER*2 aroument, you must
convert any long-integer arquments (the default), to short
integers by the use of the INTS intrinsic function.| If you want
to convert all short integers in your program to long integers,
use the —INTL option at compile time,

2-7 Fourth Edition

FORTRAN 77 Reference Guide

REAL Data

A REALL data item is an approximation to a real number. REAL data is
always written with a decimal point, an exponent, or both. The decimal
point is optional if an exponent is given. Blanks may appear between
the mantissa and its exponent. Up to seven significant digits are
retained. Exponents may range from -38 to +38. Here are some
examples:

~204. -20400 E-2 0. 8.8756E4 8.8756E+4

Real constants must fall in the type REAL range. They will not become
DOUBLE PRECISION on the basis of magnitude or number of digits.

DOUBLE PRECISION Data

DOUBLE PRECISION data is also called REAL*8, It is similar to REAL
except that twice as much storage is allocated, and "D" rather than "E"
appears in the exponent. The "D" exponent is mandatory. Examples:

123456789.D0 2,5 D2 0.D0 -999p+21

Up to 14 significant digits are retained. The exporent may range from
-9812 to +9824.

REPL*lG Data

REAL*16 data is similar to DOUBLE PRECISION data except that up to 28
significant digits are retained. The letter "Q" is used as an
exponent, Here are some examples: '

PRI e S e e e

The exponent may range from -9818 o 49824,

(OMPLEX Data

A COMPLEX (or QOMPLEX*8) data item is an ordered pair of real numbers.
The first number represents the real part and the second represents the
imaginary part. In a complex constant, or when a oomplex number is

Fourth Edition 2-8

e

FORTRAN 77 TERMS AND (ONCEPTS

used in list-directed I/0, the number appears in parentheses with its
components separated by a comma. Here are some examples:

(1.,-1.) (2586, 331.) (.172E19, 304E-2)

The comma and parentheses must appear when a complex number is used in
list-directed I/0. They must be omitted from a complex number used in
formatted I/0.

(OMPLEX*16 Data

The COMPLEX*16 data type is identical to COMPLEX except that
DOUBLE PRECISION numbers are used rather than REAL numbers. =

IOGICAL Data

IOGICAL data items denote only the logical values TRUE and FALSE. In
programs, logical constants must be written:

.TRJE. .FALSE.

In input files, either the constants or the letters T and F may denote
the values. On output, T and F are always written.

Logical constants and logical variables lacking a *(size) specification
become either 'LOGICAL*4 if the program is compiled with -LOGL (the
default), or LOGICAL*2 if it is compiled with -LOGS. A LOGICAL*1 type
is also provided for compatibility with IBM FORTRAN. This type should
not be used in new programs, because it is processed less quickly than
LOGICAL*2 or LOGICAL*4.

CHARACTER Data

The CHARACTER data type is a new feature of FORTRAN 77. It makes
Hollerith strings and the use of arithmetic variables to hold character
data obsolete, 'F77 continues to support the Hollerith and
arithmetic/character techniques as an aid to upward compatibility of
existing programs. New programs should use only CHARACTER data.

A CHARACTER data item is a nonempty string of characters. Each item
has a length equal to the number of characters it contains. The
character positions are numbered from 1 to LENGTH. Each character
occupies one byte.

2-9 Fourth Edition

FORTRAN 77 Reference Guide

A character constant oonsists of a string of characters enclosed in
single quotes. Any internal single quotes must be represented by two
consecutive single quotes, The two oount as only one character
position. For example, the character string:

'"THAT''S ALL'

occupies ten positions, since the two quotes count as orne for the 'S,

Hollerlth Constants

Z Hollerlth constants are accepted in F'77 to aid uward com[.atlblllty of-
'FORTRAN IV programs, This type is obsolete, Use CHARACTER constants
and var:.ables when writing new programs.

OPERANDS

Operands are those elements that are manipulated by the program. Four
types of operands exist in FORTRAN 77: Constants, Parameters,
Variables, and Arrays.

Constants

Constants exist for every data type. In a program, a constant appears
as a literal representation of the desired value. The ocompiler
determines the type of the constant from its appearance, its context,
and the compiler options in effect.

The correct form for each type of constant appears in the previous
subsection under the appropriate data type.

Parameters

Parameters are named constants, and may be of any data type. They are
functionally similar to oonstants, but are referenced by the name
assigned to the value in a PARAMETER statement, rather than by a
literal occurrence of the value, Parameters may not appear in FORMAT
statements. Parameter names follow the same rules as variable names.

Do not confuse parameters with argquments to subroutines, In FORTRAN 77
the term "parameter" denotes only a named constant.

Fourth Edition 2-10

FORTRAN 77 TERMS AND CQONCEPTS

Variables

Variables are data items whose values may be assigned, and subsequently
altered, during program execution.

FORTRAN 77 variable names contain from one to six characters. In F77,
variable names may have from orne to 32 characters. Character 1 must be
alphabetic; characters 2-32 (if any) must be alphanumeric, or the
characters "$" or " ", You are discouraged from using "$" in your
variable names because this character 1is used extensively in
Prime-supplied software names, where it serves to implement a system of

naming conventions.

When no type is explicitly declared, a variable whose name begins with
the letters I through N becomes type INTEGER, and a variable whose name
begins with A-H or O-%Z becomes type REAL. See Chapter 3 for

instructions on how to override this implicit convention, and how to
specify DOUBLE PRECISION, (OMPLEX, CHARACTER, and LOGICAL types.

Arrays

Arrays are ordered, multidimensiomal sets of variables. An array is
declared in a DIMENSION, QOMMDON, or type-statement such as:

DIMENSION array_declarator [,array_declarator]...
where each "array declarator" has the form;
NAME (dl[,d2]...[,d7])

in which NAME is the mname of an array (same rules as for a variable
name) , and each dn has the form:

[Ln:]HN

Ln is the lower subscript bound, and Hn is the upper subscript bound,
for dimension n. There may be at most seven dimensions. If Ln is

omitted, it is assumed to be 1.
For example:
INTEGER ARR(-3:3,7,0:204,-207:-91,81)

DIMENSION A (2:4,4,-1:1)
GOMMON C (-2:6,8)

2-11 Fourth Edition

FORTRAN 77 Reference Guide

In a main program, Ln and Hn must be integer-—constant expressions. For
a dummy argument array in a subprogram, they may be integer expressions
(for an adjustable array), and the upper bound of the last dimension
may be given an asterisk (to denote an assumed-size array). See
Chapter 8 for details. Arrays are stored by colums: the leftmost
subscript varies most rapidly when the array is accessed in storage
order,

Referencing Arrays

Array references have the form:

NAME (S1[,S2]...[,S7])

where each Sn is a subscript expression.,

A subscript expression is any legal FORTRAN 77 integer—-valued
expression, It may contain constants, variables, function references,
intrinsic references, and other array references.

Notes

Non-integer data items are not allowed 1in subscript
expressions., Convert any such items to integers by using the
appropriate conversion function (IDINT, IFIX, INT, etc.)

An array longer than orne segment (128K bytes) must be stored in
a COMMDN block. An array shorter than one segment should not
be stored in a @MMON block 1longer than one segment, See
Arrays as Arguments in Chapter 8 for more information., See the
QOMMDN Statement in Chapter 3 for a restriction on the
placement of data items (including arrays) in a CQOMMDN block.

Evaluation of a function reference in a subscript expression
must not alter any other elements of the subscript expression
list, either directly or by altering arguments used in other
function references.

Caution

When an array that crosses or may cross a segment boundary is
passed as an argument to a subprogram, special action is
necessary. See Arrays as Arquments in Chapter 8,

Fourth Edition 2-12

i

FORTRAN 77 TERMS AND (ONCEPTS

EXPRESSIONS
An expression is formed from one or more operands, operators, and
parentheses. It evaluates to a single value., There are four kinds of
expressions in F77:

e Arithmetic

® Relatiomal

e Logical

e Character

Arithmetic Expressions

An arithmetic expression is used to express a numeric computation.
Evaluation of an arithmetic expression produces a numeric value. The
expression can consist of constants, numeric variables, array elements,
function references, or other expressions separated by parentheses and
arithmetic operators. An arithmetic expression can be Just one
arithmetic term, or it can consist of more than one arithmetic term
serarated by operators. In FORTRAN 77, there are six arithmetic
operators:

Operator Representing

Exponentiation

Division

Multiplication

Addition

Subtraction or Negation
Assignment

(LI B o N
*

Operator Evaluation: Arithmetic expressions are evaluated according
to a particular operator hierarchy:

Operator Rank
k% 1

* and / 2
+ and - 3

2-13 . Fourth Edition

FORTRAN 77 Reference Guide

When you have two or more operators of the same rank appearing in an
expression, they are generally evaluated in a left-to-right order. For
example, the expression A*B/C evaluates to (A*B)/C. However, the
compiler takes advantage of groupings of elements (in accordance with
mathematical rules) to optimize its output. In the case of A*B - A*C,
the compiler may evaluate A*(B-C) instead. Consequently, evaluation
may sometimes not be strictly left to right,

With exponentiation, the order of evaluation must be from
right-to-left. For example, A**B**C is evaluated as A**(B**C),

The ocompiler always respects the integrity of parentheses. For
example, (A*B) - (A*C) would be evaluated exactly as written.
Expressions within parentheses are always evaluated before expressions
outside them. For example, A*(B/C) will have its quotient evaluated
first, Where evaluation order is critical, use parentheses to
eliminate any ambigquity.

If you are combining numeric data types in an expression (mixed-mode
arithmetic) the use of parentheses is suggested. For example, the
expression = I*J*R is best evaluated as = I*(J*R) as opposed to = I*J*R
or = R*I*J., BAn evaluation that proceeds in this manner may prevent an
overflow condition during integer multiplication. An overflow
condition happens when an integer or real value exceeds the upper limit
allowed by the computer.

Where multiple references to functions occur in an expression, the
compiler may evaluate them in any order. No function reference may
alter any other value in the expression, either directly or by altering
arquments used in other function references.

Character Expressions

A character expression contains a character string., It is a character
constant, symbolic name of a character constant, character variable
reference, character array element, character substring reference, or
character function reference.

To join two or more strings to form one longer string, use the double
slash as the concatenation operator: ‘

character expression // character expression

Fourth Edition 2-14

FORTRAN 77 TERMS AND (ONCEPTS

Relational Expressions

A relatiomal expression oonsists of two arithmetic or character
expressions separated by one of six relatiomal operators:

Relatiomal Operator Representing
.LT, Less than
.LE. Less than or equal to
-EQ. Equal to
.NE. Not equal to
.GT, Greater than
.GE. Greater than or equal to

When evaluated, the wvalue of a relatiomal expression is either .TRUE.
or .FALSE. For example, the expression 2 .LT. 3 evaluates to .TRUE,
The arithmetic rules for operator precedence apply to relatiomal
expressions:

Operator Rank

*% l

* and / 2

+ and - 3

// 4

.GT. .GE. .FQ. .NE, .LT. .LE 5

Logical Expressions

A logical expression uses logical operators to oonnect relatiomal
expressions. When tested, the logical exprssion will be either ,TRUE.
or .FALSE. Table 2-2 lists the logical operators.

The arithmetic rules for operator precedence apply to logical
expressions:

Operator

*%

* and /
+ and -
//
.GT. .GE. .EQ. .NE. .LT. .LE
«JBE,
.AND.
.OR.
LEQV. .NEQV.

WO~ U WM ‘E
=

2-15 Fourth Edition

FORTRAN 77 Reference Guide

Table 2-2
FORTRAN 77 Logical Operators
Operator Meaning Example (P and Q Result
are of type LOGICAL)
.NOT, Logical .NOT, 0
Negation . TRUE, .FALSE,
.FALSE, .TRUE.
.AND. Logical 0 .AND. P
Conjunction .FALSE, .FALSE. .FALSE.
.TRUE, .FALSE, .FALSE,
.FALSE, . TRUE, .FALSE,
. TRUE, . TRUE, . TRIE,
.OR Logical 0 .OR, P
None xclusive .FALSE. .FALSE, .FALSE,
"ORing" . TRUE, FALSE, . TRUE,
.FALSE, .TRUE, . TRUE.
. TRUE, .TRUE. . TRUE,
.EDV. Logical Q .mv. P
Equivalence .FALSE, .FALSE, . TRUE
.TRUE, .FALSE, .FALSE,
.FALSE, .TRUE, .FALSE,
.TRUE, .TRUE., .TRUE,
. NEQV. Logical Q . NEQV, P
Nonequivalence .FALSE, .FALSE. .FALSE.
. TRUE, .FALSE, . THUE,
.FALSE, . TRUE. . TRUE.
. TRUE, . TRUE, .FALSE,
Fourth Edition 2-16

—

P

FORTRAN F77 TERMS AND CONCEPTS

TYPE CONVERSION

Logical operators may combine logical operands of differing storage
lengths, and arithmetic operators may combine operands of differing
numeric types. The type of the result in such cases depends on the
types of the operands.

Logical Conversion

The storage length of the result when logical data of differing lengths
are combined is the longer of the two lengths. For example:

(LOGICAL*2 .AND. LOGICAL*4) is LOGICAL*4

Arithmetic Conversion

The type of the result when differing numeric types are combined will
be that of the operand having the higher type in the following list
which is ordered from highest to lowest:

COMPLEX*16
COMPLEX*8
REAL*16

DOUBLE PRECISION
REAL

INTEGER*4
INTEGER*2

For example, REAL + SHORT INTEGER is a REAL.

Special Case: To prevent loss of precision, the result-type when

COMPLEX*8 and DOUBLE PRECISION data are combined will be COMPLEX*16.

Caution
When long integers are converted to reals, there may be a loss

of precision. No error message will be generated, but
incorrect results may occur.

2-17 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

PROGRAM ORGANIZATION IN FORTRAN 77

F77 program units consist of F77 statements. These statements must be
arranged in the oorrect order. This section describes F77 statment
order; Figure 2-1 summarizes the order.

Program Unit

A FORTRAN 77 program consists of one or more program units. A program
unit is a sequence of statements that perform one or more operations.
A program unit may be either a main program or a subprogram.

A program unit always has an END statement as its final statement.

Main Program

A main program is the program unit that receives control when an
executable program is initiated. There is only one main program unit.
The main program unit directs the flow of control to each subprogram
(it any). Control returns to the main program unit after each
subprogram has performed its computation.

The first statement in a main program unit is usually a PROGRAM
statement. A main program unit does not use a FUNCTION, SUBROUTINE, or
BLOCK DATA statement as its first statement. A main program unit
requires an END statement.

The main program unit is required for program execution.

Subprograms

A subprogram is a program unit that is invoked from the main program.
The subprogram performs a computation on the behalf of the main
program. There may be any number of subprograms associated with a main
program.

Subprograms are introduced by FUNCTION, SUBROUTINE, or BLOCK DATA
statements. The FEND statement is the final statement in a subprogram.

A subprogram is called (referenced) by a FORTRAN 77 statement in the
main program or another subprogram.

Fourth Edition, Update 2 2-18

FORTRAN F77 TERMS AND CONCEPTS

Organization Considerations

The following considerations apply to F77 program units:

e A main program unit or a subprogram unit may reference other
program units that are contained in separate files.

e A file may contain any number of program units.
® Each program unit must be terminated by an END statement.
e Comments are the only statements that can appear between the END

statement of one program unit and the header statement in the
next program unit.

Size Considerations

In F77, no Dblock of executable code can cross a segment boundary.
Therefore, no program unit may produce more than 128K bytes (the size
of a segment is 128K bytes) of code. A program unit will rarely be any
larger than this. A program unit that is larger than a segment, must
be broken up. Program data is kept in separate data segments, and
hence does not compete for space with the executable code.

The names of F77 program units may not be more than 32 characters long.
Additional characters will be ignored and a warning message printed.

2-19 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

PROGRAM, FUNCTION, SUBROUTINE, OR
BLOCK DATA STATEMENT.

IMPLICIT
STATEMENTS
PARAMETER STHER
COMMENT STATEMENTS DATA
LINES FORNRT DEFINITION
AND STATEMENTS
" ENTRY
STATEMENTS STATEMENT
FUNCTION
DATA STATEMENTS
STATEMENTS
EXECUTABLE
STATEMENTS
END STATEMENT

Fourth Edition, Update 2

Statement Order in F77
Figure 2-1

2-20

PART II

Prime F77 Language Reference

Specification
Statements

Specification statements are nonexecutable statements that allow you
to:

@ name your main program (PROGRAM).

e override the language conwention for default data (IMPLICIT).
e override implicit typing of symbolic names (TYPE statements).
e define array dimensions (DIMENSION).

® define common blocks (COMMON).

e allccate storage (EQUIVALENCE).

e initialize data (DATA).

e define symbolic names of constants (PARAMETER).

® pass subprograms as arquments to other subprograms (EXTERNAL).

e retain the wvalue of 1local variables between subprogram
invocations (SAVE).

e mass specified function names as arguments to subprograms
a (INTRINSIC).

3-1 Fourth Edition

FORTRAN 77 Reference Guide

® define beginning of block data subprogram (BLOCK DATA).

o perf.ofm"‘éeiff—iabéung 1/0 (Mi,is:ny |

‘This chapter also discusses the F77 compiler control directives. These
P -ncnexecutable statements are extensions to the FORTRAN language. Table
ives a list Qf the spec:.flcatlon statements and the syntax for-"

each statanent

PROGRAM STATEMENT

The PROGRAM statement gives a name to a main program. It is not
required, However, if you use the PROGRAM statement, it must be the
first statement of the main program.

The PROGRAM statement has the following format:

PROGRAM name

where:

name is the symbolic name of the main program in which the
PROGRAM statement appears. name must not duplicate the name of
any (OMMON block or subprogram, or of any data item in the main
program.

Fourth Edition 3-2

SPECIFICATION STATEMENTS

IMPLICIT STATEMENT

The IMPLICIT statement allows you to override the language convention
for default data typing by first letter.

FORTRAN 77 automatically assigns types to all variables, parameters,
arrays, and functions that do not appear in type statements. The
default types are as follows: if the symbol's first character begins
with the letters I through N, the symbol is typed as integer; all
other names beginning with letters A - H, or O - Z, are typed as real.
The default integers are long integers (INTEGER*4) unless you use the
~INTS option at compile time. (See Chapter 9 for information on the
-INTS option.)

The IMPLICIT statment has the following format:
IMPLICIT type (list) [, type (list)]...

where:

type is one of INTEGER*2, INTEGER*4, REAL*4, DOUBLE FPRECISION,
REAL*16, COMPLEX*8, COMPLEX*16, LOGICAL, or CHARACTER.

list alphabetically lists the letters that will cause default
to that type. Letters may be separated by a comma, or an
inclusive group of letters may be indicated with a dash.

Symbols not typed in a type statement or by a default specified in an
IMPLICIT statement will be typed by the FORTRAN 77 language default.

For example:

IMPLICIT DOUBLE PRECISION (A,N,0,P-Z), LOGICAL (B), CHARACTER*3 (M)

First letter of symbol Type
A, or N through Z Double Precision
B Logical
C through H Real
I through L Integer
M Character*3

If you use the IMPLICIT statement, it must be the first statement of a
main program (the second statement if a PROGRAM statement exists), or
the second statement of a subprogram. IMPLICIT affects all symbols not
otherwise typed. This includes dummy arquments in the header statement
of a subroutine or function, and function names that are not explicitly
typed. IMPLICIT typing does not affect the default type of intrinsic
functions.

3-3 Fourth Edition

FORTRAN 77 Reference Guide

TYPE STATEMENTS

The type statement is used to explicitly type symbolic names,
superceding any implicit type assignments of symbol names done either
by IMPLICIT or by language default. A data item may be initialized in
a type statement. There are two kinds of type declaration statements:
e numeric type declarations
e character type declarations
The following rules apply to type statements:

@ Within a program unit, a name must not have its type explicitly
specified more than once.

® Type declaration statments must precede all executable
statements.

® The name of a main program, subroutine, or block data subprogram
must not appear in a type statement,

Numeric Type Declaration Statements

The numeric type statement has the following format:

type v [,v]

where:

type is replaced by ome of the following data type
specifications:

TINTEGER

INTEGER*2

INTEGER*4 (same as INTEGER)
REAL

REAL*4 (same as REAL)

REAL*8 (same as DOUBLE PRECISION)
REAL*16

DOUBLE PRECISION (same as REAL*8)
COMPLEX

(OMPLEX*8 (same as (OMPLEX)
COMPLEX*16

Fourth Edition 3-4

A,

“““““““

SPECIFICATION STATEMENTS

LOGICAL

LOGICAL*1
LOGICAL*2
LOGICAL*4

V is a variable name, array name, array declarator,
symbolic name of a constant, function name, or dummy
procedure name,

Note

The types INTEGER*2, REAL*16, (OMPLEX*16, LOGICAL*1l, and
LOGICAL*2 are F77 extensions. The names INTEGER*4, REAL*4,
REAL*8, (OMPLEX*8, and LOGICAL*4 are F77 synonyms for the
corresponding FORTRAN 77 data types INTHGER, REAL,
DOUBLE PRECISION, (OMPLEX, and LOGICAL. These synonyms are
provided for upward compatibility of existing FORTRAN IV
programs, They should not be used in new programs.

The storage length given in the type will ordinarily apply to all the
data items in the statement. In F77, lengths may also be specified for
data items singly. When both a single and a general length
specification are given, the single specification takes precedence.
For example:

Type Statement Equivalent To

INTEGER A*4, B*2 INTEGER*4 (A7), INTEGER*2 (B)

INTEGER*4 C, D*2, E INTEGER*4 (C), INTEGER*2 (D)
INTEGER*4 (E)

Recognition of synonymous data types is provided to ease conversion of
existing programs to F77. INTEGER will normally default to INTEGER*4
(long integer) unless the program is compiled with the —INTS option, in
which case it will default to INTEGER*2 (short integer). IOGICAL will
default to LOGICAL*4 unless the program is compiled with -LOGS, in
which case it will default to LOGICAL*2. See Chapter 9 for compiler
option information, '

To initialize a data item in a type statement, enclose the desired
value between slashes and insert it immediately after the data item
name. The rules and syntax of the DATA statement apply, except that
each initializing value must follow its data item immediately, and not
all the items need be initialized.

3-5 Fourth Edition

FORTRAN 77 Reference Guide

:Fér'emple’:
INTEGER B/5/,B,C,D,E(2)/1,2/,F(5)/5%10/

Any initialized data item will be placed in static storage.

Character Type Declaration Statements

The CHARACTER type statement has the following format:
CHARACTER [*len [,]] cname [,cname]...

where:

len is an integer constant, or an integer constant expression
in parentheses. len must be equal to between 1 and 32767
inclusive, giving the length of the CHARACTER variable in
bytes., If *len is omitted, the length defaults to 1. In a
dummy argument in a subprogram, len may be replaced by an
asterisk in parentheses. A character item so declared will
take on the length of the corresponding actual argument in the
invoking program unit.

cname is a variable name or a list of variable names, parameter
names, array names, function names, or array declarators.

(HARACI‘ER entities may be initialized in a type _statement. CHARACTER
entities having different lengths may be declared in the same type
statement, For example:

Type Statement Equivalent To

CHARACTER*50 F, G*100, H, J*1 CHARACTER*50 (F), CHARACTER*100 (G)
CHARACTER*50 (H), CHARACTER*1 (J)

CHARACTER parameters and arrays are declared as with other data types.

Substrings: A contiguous subset of a CHARACTER data item is known as a
substring. A substring of a variable or array element is specified in
e following ways:

VARNAME (L :H) ARRAYNAME (subscripts) (L:H)

Fourth Edition 3-6

T

SPECIFICATION STATEMENTS

VARNAME (L:H) ARRAYNAME (subscripts) (L:H)

where:

L and H are integer expressions giving the lowest and highest
Character positions of the desired substring. If L is omitted,
1 is assumed. If H is omitted, the length of the variable is
assumed. L must be less than or equal to H.

Substrings cannot be extracted from constants and parameters. When a
substring of a constant or parameter is needed, assign the constant or
parameter to a CHARACTER variable, then extract the substring from the
variable.

For example, if CVAR = 'ABCDE'. Then:

CVAR (2:5) is equivalent to: 'BCDE'
CVAR (:3) is equivalent to: 'ABC'
CVAR (4:) is equivalent to: 'DE'

Use of Octal Constants: Since the ANSI FORTRAN character substring

‘operation and Prime's convention for octal constants both use the colon

character, some expressions involving colons are ambiguous. Therefore,
if a program unit with a CHARACTER or IMPLICIT CHARACTER statement
wishes to use octal constants anywhere in a function argument list, you
must specify that function in an INTRINSIC or EXTERNAL statement.

Concatenation: Character entities may be concatenated using the
operator '//'. Here are some examples:

'2' // CVAR (2:5) is equivalent to: 'ZBCDE'
'BBC' // 'XYZ' is equivalent to: 'ABCXYZ'

Assigmnment: Where lengths do not match in an assignment of character
data, truncation or padding with blanks takes place on the right.
Undefined positions on either side of positions assigned by substring
remain undefined.

In FORTRAN 77, no position may act as both source and destination in a
substring assignment. F77 relaxes this restriction. This extension
must be used carefully, because the source string is not copied before
execution of a substring assignment. The assignment may therefore
encounter its own effects partway through execution.

3-7 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

For example, if K_"and Q are CHARACTER¥5:

// 'B' // o i /* . - .ABCﬂ)' e

K= ‘Al =

Q\(3;4).= K (2:3) . g /* Bl = 129BC?"
E=K [/ K e /*,K = 'ABCbb’
K (1:3) =K (2:4) . /* K = 'BODbbY

Comparison: Character entities may be compared using the relational
operators. The collating sequence reflects the Prime Extended
Character Set. (See Appendix A.)

IF ('ABX' .LT. (CvAR (2:3)//'ZQ0')) GO TO 100

Intrinsic Functions: Various intrinsic functions exist to provide
services related to CHARACTER data items. They are described in
Chapter 8.

Input/Output: I/O of CHARACTER data is similar to I/O for the other
data types. Formatted CHARACTER I/0 uses the "A" field descriptor.
See Chapter 7.

Fourth Edition, Update 2 3-8

el

SPECIFICATION STATEMENTS

DIMENSION STATEMENT

The DIMENSION statement defines a symbolic name to be an array, and
sets the number of dimensions and bounds of each dimension of the
array.

The DIMENSION statement has the following format:

DIMENSION array declarator [,array declarator]...

where:

array declarator consists of the array name followed by
parentheses that enclose the maximum values for each dimension
of the array. See Chapter 2 for information on array
declarators.

The following DIMENSION statement shows how to declare the dimensions
of three arrays:

DIMENSION JARRAY (10), KARRAY(2,3), LARRAY(5,6,7)
The first array has a maximum dimension of 10; the second, a value of
2 X 3; and the third array, a value of 5 X 6 X 7.

Arrays can also be declared in a type statement:

INTEGER JARRAY (10) , KARRAY (2,3), LARRAY (5,6,7)

3-9 Fourth Edition

FORTRAN 77 Reference Guide

Table 3-1
Specification Statement and
Compilation Directive Syntax

Statement Syntax

BLOCK DATA BLOCK DATA [name]

COMMDN QOMMDN [/[cb/] nlist [[,]/[cb]l/ nlist] ...
DATA DATA nlist/clist/ [[,] nlist/clist] ...
DIMENSION DIMENSION array declarator [,array declarator]...
BEQUIVALENCE EQUIVALENCE (nlist) [,(nlist)] ...
EXTERNAL EXTERNAL name [,name]

FULL LIST FULL LIST

IMPLICIT IMPLICIT type (list) [,type (list)]...

- SINSERT $INSERT insert-file (Must start in Col. 1)
INTRINSIC INTRINSIC name [,name]...

_'LIST LIST

NAMELIST NAMELIST/blockname/v [,v] .../

NO LIST NO LIST

PARAMETER PARAMETER (p=C [,P=Cl...)

PROGRAM PROGRAM name

SAVE SAVE [v [sV]...]

Type statement type v [,V]...

Fourth Edition 3-10

Ak

SPECIFICATION STATEMENTS

MOMMON STATEMENT

The COMMON statement is a means of commmnicating between program units
through a common storage area that can be referenced by two or more
program units.

The COMMON statement has the following format:
QOMMON [/[cb]/] nlist [[,]/[cb]l/ nlist] ...

where:

cb is a common block name. If you include cb, this is a named
‘common block. If you do not include cb, this is a blank common
block. If you do not include the first cb, the first two
slashes are optional. ¢b must not be the same as the name of
any subroutine, function, or entrypoint in the program.

nlist is a list of variable names, array names, and array
declarators. You cannot use the same name more than once
within nlist, nor can you use the names of dummy arguments.

Data items are assigned sequentially within a COMMON block in the order
of appearance in the COMMON statement(s) defining the block. BIND
assigns all QOMMON blocks with the same name to the same storage area,
regardless of the program or subprogram in which they are defined.

The length of a COMMDON block is the number of bytes used by all the
items specified in the QOMMON statement(s), plus the number of bytes
appended to the block by any EQUIVALENCE statements.

Blank COMMON blocks may be of differing lengths. In FORIRAN 77, all
instances of a named QOMMON block must have the same length. This
restriction is relaxed in F77, as an aid to compatibility with other
extended versions of FORTRAN 77. :

An F77 extension also allows both character and noncharacter data to be_a
allocated in the same QOMMDN block.

When a given OMMDON block, named or blank, has different lengths in
different program units, the program unit oontaining the longest
instance of the block must always be loaded first, because BIND
allocates space for a QOMMON block on the basis of its first
occurrence, Note that a set of program units with COMMON blocks could
easily be generated for which no oorrect load order exists. The
preferred method is simply to make all instances of a COMMON block the
same length, by padding them as necessary. No inefficiency of time or
space utilization can result from following this practice.

3-11 Fourth Edition

FORTRAN 77 Reference Guide

These restrictions exist on the layout of data items in a COMMON block.

e Inany COMMDN block, all data items except CHARACTER and
LOGICAL*1 variables and array elements must begin at a 16-bit
halfword boundary (0, 2, 4... bytes from storage location 0).
Use padding variables as needed to maintain word alignment.

e Every CHARACTER variable or array in a COMMON block more than
orne segment (128K bytes or characters) in size must have an
element length that is a power of two.

e Every variable and array of any kind in a large OMMN block
must be offset by a multiple of its element length from the
start of the COMMON block. No single element may be larger than
one segment. The length of every variable and array element
must divide evenly into the length of a segment.

Note

When an array that spans a segment is passed to a subprogram as
an actual argument, that subprogram must be compiled with -BIG
if that particular array spans the segment boundary in a large
OMMON block. (A large QMMON block is anything over one
segment in size.) See Arrays as Arquments in Chapter 8.

Fourth Edition 3-12

SPECIFICATICN STATEMENTS

BEQUIVALENCE STATEMENT

The EQUIVALENCE statement specifies that two or more entities within
the same program unit share storage locations.

The EQUIVALENCE statement has the following format:

EQUIVALENCE (nlist) [,(nlist)]...

where:

nlist is a list of two or more variable names, array element
names, and character substring names. Each of the entities in
nlist are allocated in memory beginning at the same location.
When an unsubscripted array name is mentioned, the effect is as
if its first element had been mentioned. FORTRAN 77 requires a
separate subscript for each dimension of an array, but Prime
F77 allows one subscript to be used to denote the whole array.

Bn EQUIVALENCE statement causes all the items mentioned in each
parenthetical list to be stored beginning with the same byte of
physical storage. When variables of different lengths are
equivalenced, the shorter is stored in the first bytes of the longer.
When specific array elements are equivalenced, the arrays as wholes
become correspondingly aligned.

When data in a QOMMDN block is equivalenced to other data, some bytes
of the other data may become aligned with storage positions outside of
the COMMON block, When this occurs, the block has been extended. Only
extensions to the right (towards higher storage addresses) are legal.

Legal example:
INTEGER I, A(3)

@MDN // I
EQUIVALENCE (I, A(l))

This example extends the COMMON block to the right (towards higher
storage addresses).
Illegal example:

INTEGER I, A(3)

OMMDON // I
EQUIVALENCE (I, A(3))

This example attempts to extend the COMMON block to the left., This is
illegal and will cause an error message.

3-13 Fourth Edition

FORTRAN 77 Reference Guide

Data items already fixed in storage cannot be equivalenced. An
equivalence statement cannot make self-contradictory demands.
Therefore the following examples are all illegal:

INTEGER A(5)
EQUIVALENCE (A(1), A(5))

OMDN // A,B
EQUIVALENCE (A, B)

INTEGER A(5), B(5), C(5)
EQUIVALENCE (A(5), B(1)), (B(5), C(1)), (C(5), A(1))

Prime's hardware requires that all (OMMON block data items except
CHARACTER and |LOGICAL*1 variables and array elements must begin at a
16-bit halfword boundary (0, 2, 4...bytes from the start of the C(OMMN
block). No EQUIVALENCE can violate this rule. Hence the following is
illegal:

CHARACTER*1 CVAR(4)
INTEGER*4 NUM

QOMMON // CVAR
EQUIVALENCE (CVAR(2),NUM)

Any data item equivalenced to a static data item will itself be static.
In F77, character and nonm-character data may be equivalenced.
FORTRAN 77 does not allow this practice.

Fourth Edition 3-14

i

N

e

SPECIFICATION STATEMENTS

DATA STATEMENT

The DATA statement tells the compiler to put initial values into data
items before program execution.

The DATA statement has the following format:
DATA nlist/clist/ [[,] nlist/clist/] ...

where:

nlist is a list of variables, array names, array elements, substring
names, and implied DO lists, in which any expressions that appear must
be integer constant expressions.

clist is a list of constants and parameters, possibly with repetition
factors. A repetition factor is an integer constant followed by an
asterisk.

The values in each clist are assigned in order to the corresponding
items in nlist. For each item, there must be a value of a type validly
assignable to the item. If a scalar numeric object in nlist 1is being
assigned a character value from clist, type conversion and character
padding will occur as they would in an assignment statement, but a
compiler error will be generated if truncation is necessary. A type
declaration of CHARACTER cannot be initialized to a numeric value in a
DATA statement. Any implied DO lists and repetition factors present
operate as they would in a list—directed READ statement. For example:

INTEGER A,K, ARR(1:5, 1:5)
DATA A,K/3,4/((ARR(I,J), I=1,5), J=1,5)/25*5,0/

When large arrays of character data must be initialized, effort can be
saved by declaring a separate CHARACTER variable equal in length to the
entire array, eguivalencing it to the array, and initializing it with
the concatenation of all the desired initial values. For example:

CHARACTER*2 K (3)
CHARACTER*6 INITK
EQUIVALENCE (K,INITK)
DATA INITK /'ABCDE'/

In the above example, array K now contains the following values:

K(1)="AB' K(2)='CD' K(3)="'E '

3415 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

A string can be used to initialize an entire array, provided that the
string size is less than or equal to the size of the array elements.

Overflow of string size causes an error message. The following program
segment generates an error message due to overflow of string size:

6 REAL *4 RADIO, RID,DIO
7 DATA RADIO/'CAD'/, RID/'OBEY'/, DIO/'ABSOLUTELY'/

Here is the error message generated by the above example:

ERROR 398 SEVERITY 4 BHEGINNING ON LINE 7
A string of incorrect length is
being used to initialize "DIO."

MAX SEVERITY IS 4

In the example above, DIO is declared to be 4 bytes. However, the
string ABSOLUTELY is larger than 4 bytes. The size of the strings CAD
and OBEY are not larger than the declared size of the variables RID and
RADIO, and are therefore acceptable.

Any data item initialized in a DATA statement, and any data items
equivalenced to it, will be declared static by the compiler. For more
information, see the SAVE statement discussed later in this chapter,
and the —-SAVE option in Chapter 2.

In F77 you can initialize named or blank common items outside of a
block data subprogram, using the DATA statement.

F77 also allows varlables or syrnbollc names to be initialized in type
statements.

PARAMETER STATEMENT

The PARAMETER statement allows you to reference a constant by using a
symbolic name.

The PARAMETER statement has the following format:

Fourth Edition, Update 2 3-16

SPECIFICATION STATEMENTS

PARAMETER (p=c [,p=c]...)

where:
p is a symbolic name previously typed in any standard way.

c is a oconstant expression of a type appropriate to the
Corresponding p. A constant expression consists only of
constants, parameters, constant expressions in parentheses, and
appropriate operators.

For example:

PARAMETER (TEST = 6.8679)

ANS = TEST/B

Any parameters that appear must have been defined in a previous
PARAMETER statement. Function references and nonintegral
exponentiations are prohibited. A parameter may not be used to form a
complex constant.

Unless specifically prohibited, parameter names may be used wherever a
constant could be used (including DATA and DIMENSION statements) except
in FORMAT statements. Since parameters are named constants, they may
not be elements of COMMON blocks and cannot be equivalenced. They may
be used in declaring bounds of arrays in COMMON.

In F77, the parentheses around the parameter list may be omitted.

EXTERNAL STATEMENT

The EXTERNAL statement allows you to specify subprograms to be passed
as arquments to other subprograms, where they may be used directly, or
declared EXTERNAL and passed again.

The EXTERNAL statement has the following format:
EXTERNAL name [,name]...
where:

name is the name of a user-supplied or library subprogram, or
1s a dummy subprogram name.

3-17 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Without the EXTERNAL statement, variables would be default-declared and
passed instead.

If you specify an intrinsic function name as EXTERNAL in a program
unit, the name will refer to the user-supplied subprogram, and the
intrinsic function will be unavailable to that program unit. If you
want to pass an intrinsic function to a subprogram, you should use the
INTRINSIC statement that is discussd in the following sections.

It is recommended that the names of any user-supplied subprograms
called from a program unit appear in an EXTERNAL statement in that
unit. This method enhances portability to other systems, where some
intrinsic function might have the same name as a user-supplied
subprogram.

SHORTCALL STATEMENT

The SHORTCALL statement specifies that one or more external subprograms
are to be called using the Prime Shortcall Interface. The external
subprograms named in the SHORTCALI, statement must be written in Prime
Macro Assembly Language (PMA), and must conform to the Prime Shortcall
Interface. The F77 calling program and the PMA called program must be
both I-mode programs or both V-mode programs. Refer to the Assembly
Language Programmer's Guide for a complete discussion of this interface
and its implications for the PMA programmer. Refer to Appendix E of
this manual for an example of V-mode and I-mode SHORTCALL routines.

The advantage of shortcalled subprograms is that the mechanisms of
invoking them and passing argquments to them are much more efficient
than the Prime procedure call mechanism by which all F77 subprograms
are normally called. Small F77 subprograms that are frequently invoked
during the execution of an F77 application are excellent candidates for
conversion to shortcalled PMA subprograms.

An external shortcalled subprogram is invoked the same way any F77
subprogram is invoked, using either a function reference or a CALL
statement.

The SHORTCALIL statement has the form:
SHORTCALL subprogram[(n)] [,subprogram[(n)]]

where:

subprogram is the name of an external subprogram that is called by
the Prime Shortcall Interface.

Fourth Edition, Update 2 3-18

-

e

SPECIFICATION STATEMENTS

n is an integer constant expression indicating the number of
halfwords of scratch space reserved in addition to the default.
F77 automatically reserves 20 halfwords in every program unit's
stack frame header for use by shortcalled subprograms; if you
specify a value for n, F77 reserves 20 + n halfwords. F77 reserves
additional space by increasing the size of the calling program's
stack frame header by the amount specified by n.

Notes

Subprograms whose names appears in SHORTCALL statements may
not be passed as arguments to other subprograms.

The SHORTCALL feature should be used with caution and

should be used only by programmers who are thoroughly
familiar with PMA and with the Prime Shortcall Interface.

SAVE STATEMENT

The SAVE statement causes the subprogram variables and arrays named in
it to retain their values between invocations (static storage) rather
than losing their values when the subprogram returns (dynamic storage).

The SAVE statement has the following format:
SAVE [v [lv]--o]

where:

v is a variable or array name or a COMMON block that is not
part of or equivalenced to a COMMON block. If COMMON block is
used the format is: /COMMON block/. 1If no vs appear, the save
is taken to include all local data items.

In F77, all COMMON blocks, named or blank, are static in all cases.
Therefore the appearance of a COMMON block name in a SAVE statement has
no effect. If a program is compiled with the —-SAVE option, all local
data items will be static. A SAVE statement will not have any effect.
If a program is compiled with -DYNM, (the default) all local data item
will be dynamic unless they are saved. '

INTRINSIC STATEMENT

The INTRINSIC statement allows the function names specified to be
passgd as argquments to other subprograms, that may then reference the
particular function passed.

3-19 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

The INTRINSIC statement has the following format:
INTRINSIC name [,name]...

where:
name is the name of an F77 intrinsic (built-in) function.

Without the INTRINSIC statement, variables would be default-declared
and passed instead. No name may appear in both an INTRINSIC and an
EXTERNAL statement, or in more than one INTRINSIC statement, in the
same program unit.

It is recommended that the names of all intrinsic functions referenced
in a program unit be listed in an INTRINSIC statement in that unit.
This practice will result in immediate diagnostic messages if the
program is run on a different system that does not supply all the
needed intrinsics.

BLOCK DATA STATEMENT

The BLOCK DATA statement is the first statement in a BLOCK DATA
subprogram. A BLOCK DATA subprogram is a nonexecutable subprogram that
initializes variables in named COMMON. You have the option of not
providing a name for a BLOCK DATA subprogram; however, if you do
provide a name, it must not be the same as any other name used by any
other block data subprogram. A program may contain any number of BLOCK
DATA subprograms.

The BLOCK DATA statement has the following format:
BLOCK DATA [name]

where:

name is the name of the block data subprogram in which the BLOCK
DATA statement appears.

Initialization of blank COMMON is an F77 extension. The entire block
must be specified in a COMMON statement in the subprogram if any part
of it is to be initialized. Only COMMON, EQUIVALENCE, DIMENSICON, DATA,
IMPLICIT, PARAMETER, END, INCLUDE, and type statements may appear in a
BLOCK DATA subprogram. The END statement is the last statement in the

subprogram.

Fourth Edition, Update 2 3-20

SPECIFICATION STATEMENTS

Notes

The BLOCK DATA statement must appear only as the first
statement of a BLOCK DATA subprogram.

All entities in a named COMMON must be specified.

The named COMMON block may be used only once in any subprogram.

INCLUDE STATEMENT

The INCLUDE statement includes into the compilation stream at that
point the contents of a file whose pathname is "insert-file". This is
useful in avoiding the duplication of code which is required several
times in a program or a series of programs. For example, there may be
several lines of source code, such as common block specification, that
appear in several program units.

The INCLUDE statement is also useful in that it allows multiple users
to access common files. The INCLUDE statement must begin in column 7,
or thereafter, of the source form.

The INCLUDE statement has the following format:

INCLUDE 'insert—file'

Here is an example of the INCLUDE Statement:

INCLUDE 'CIRCLE'

CALL SIRKLE(RADIUS,AREA)

PRINT*, 'THE AREA OF THE CIRCLE IS:', AREA
STOP

END

SUBRCUTINE SIRKLE (RD,ANS)
PI = 3.145929

ANS = PI*RD*2

RETURN

END

In the above example, if the INCLUDE file 'CIRCLE' contained the
following lines of code:

AREA = 0

RADIUS = 0

PRINT*, 'TYPE IN A VALUE FOR THE RADIUS OF THE CIRCLE:'
READ*, RADIUS

3~21 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

then, the INCLUDE statement includes those lines of code at the point
indicated.

The program compiles as if it were the following:

AREA = 0

RADIUS = 0

PRINT*, 'TYPE IN A VALUE FOR THE RADIUS OF THE CIRCLE:'
READ*, RADIUS

CALL SIRKLE (RADIUS,ARER)

PRINT*, "THE AREA OF THE CIRCLE IS:', AREA

STOP

END

SUBROUTINE SIRKLE(RD,ANS)
PI = 3.145929

ANS = PI*RD*2

RETURN

END

The example above demonstrates that the code used in the file 'CIRCLE'
need not be repeated when the INCLUDE statement is used.

An INCLUDE statement may appear nested inside a file named in an
INCLUDE statement. INCLUDE files may be nested up to 32 levels.

Up to 500 INCLUDE statements may appear in a compilation, including
those found inside a file named in an INCLUDE statement.

Note

The coded lines of the inserted file must be comply with the
required order for F77 statements as summarized in Figure 2-1.

The pathname of the inserted file must be enclosed by single
quotes.,

At Revision 21.0, F77 supports using INCLUDES Search Rules with the

INCLUDE statement. Refer to Appendix G for detailed information
about how to use the search rules with the INCLUDE statement.

Fourth Edition, Update 2 3=27

SPECIFICATION STATEMENTS

NAMELIST STATEMENT

Namelist is a convenient method for performing self-labeling
input/output through the use of READ and WRITE statements. The
basic unit of namelist I/0 is the namelist block. A namelist block
is a group of variables that namelist treats as unit. Any variable
that is to be read or written using namelist must belong to a
namelist block.

A namelist block is established using a NAMELIST statement. The
NAMELIST statement has the following format:

NAMELIST /name/ variable [,variable]...

where:

name is the symbolic name of the namelist block.

variables are the data items making up the block. 247 data
items are allowed.

Here is an example of the NAMELIST statement:
NAMELIST /SHIP/ I,K,SPEED

As you can see, the variables are typed in any standard way. A
namelist variable may also be part of a COMMON block, and may belong to
more than one namelist block. There may be any number of namelist
blocks. F77 allows up to 247 entries to be present in a NAMELIST
block. No subscripts may appear in a NAMELIST statement.

Namelist names and keywords in lowercase are automatically converted to
uppercase at runtime only.

For more information on using the namelist-directed I/0 statement, see
Chapter 6.

COMPILER CONTR(OI. DIRECTIVES

The following statements are F77 extensions. They provide a means of
controlling source-listing generation from within a program, and of
directing the compiler to insert files into the source program.

NO LIST Statement

The format of the NO LIST statement is

3-23 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

NO LIST

If a source listing of any kind has been specified in the compiler
options, encounter of a NO LIST statement will suppress generation of
the listing for source lines following the statement.

If no source listing has been specified, NO LIST has no effect.

LIST Statement

The format of the LIST statement is

LIST

The LIST statement reverses the effect of a NO LIST statement.
Source-listing generation resumes (or begins) following the LIST
statement.

A LIST statement will not of itself cause source listing to be

generated. An appropriate compiler option must have been given. If
one was not, LIST has no effect.

FULL LIST Statement

The format of the FULI, LIST statement is
FULL LIST

This statement is an obsolete equivalent to LIST. It is supported for
compatibility with FIN, and should not be used in new programs. See
Appendix C for a discussion of FIN/F77 compatibility.

SINSERT Statement

The SINSERT statement inserts the contents of a file whose pathname is
Vinsert-file' into the compilation stream at the point where the
SINSERT statement is located. SINSERT statements can be nested up to a
32 level depth.

SINSERT is commonly used for:

Fourth Edition, Update 2 3-24

SPECIFICATION STATEMENTS

e Insertion of COMMON specifications into programs

e Frequently used statement functions

e Data initialization statements

® Numeric key definitions, especially for the file management
system, applications library, MIDAS, MIDAS PLUS, PRISAM, and soO

Oon.

The SINSERT statement has the following format:

SINSERT 'insert—file'

Unlike other statements, the SINSERT directive must begin in column 1.
F77 allows up to 500 $INSERT files to be included in one source file.
At Revision 21.0, F77 supports using search rules with the S$INSERT

statement. Refer to Appendix G for detailed information about using
the Search Rules with the S$INSERT statement.

Note

The coded lines of the inserted file must be comply with the
required order for F77 statements as summarized in Figure 2-1.

Here is an example of the S$SINSERT Statement:

SINSERT 'CIRCLE'
CALL SIRKLE(RADIUS,ARFEA)
PRINT*, 'THE AREA OF THE CIRCLE IS:', AREA
STOP
END

SUBROUTINE SIRKLE (RD,ANS)
PI = 3.145929

ANS = PI*RD*2

RETURN

END

In the above example, if the $INSERT file 'CIRCLE' oontained the
following lines of code:

AREA = 0

RADIUS = 0

PRINT*, 'TYPE IN A VALUE FOR THE RADIUS OF THE CIRCLE:'
READ*, RADIUS

3-25 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

then the $INSERT statement includes those 1ines of code at the point
indicated. _ ; ' -

The program compiles as if it were 'th_e'fqllowing:

ARFA = 0

RADIUS = 0 : .

PRINT*, 'TYPE IN A VALUE FOR THE RADIUS OF THE CIRCLE:'
READ*, RADIUS

CALL SIRKLE(RADIUS,AREA)

PRINT*, 'THE AREA OF THE CIRCLE IS:', AREA

STOP

END

SUBROUTINE SIRKLE (RD,ANS)
PI = 3.145929

ANS = PI*RD*2

RETURN

END

The example above demonstrates that the code used in the file 'CIRCLE'
need not be repeated when the SINSERT statement is used.

Fourth Edition, Update 2 3-26

Assignment
Statements

This chapter discusses the use of assignment statements to perform the
following tasks in your program:

To compute and store calculations.
To assign a constant to a storage location.
To copy the contents of one storage location to another.

To assign statement labels to integer variables.

An assignment statement is an executable statement that specifies an
expression whose value is to be computed and assigned to a variable to
the left of the equals (=) sign. The direction of evaluation of an
assignment statement is always from the right of the equals sign to the

left,

There are four kinds of assignment statements:

Arithmetic
Character
Logical

Statement label (ASSIGN statement)

4-1 Fourth Edition

FORTRAN 77 Reference Guide

The target of the assignment statement sign must always be a predefined
variable or array element name.

Note

The variable or array element receiving an arithmetic value can
be type INTBGER*2, INTEGER*4, REAL, DOUBLE PRECISION, |REAL*16,
(OMPLEX, or |QOMPLEX*16. The variable or array element
receiving a logical value must be type LOGICAL. The variable,
element, or substring receiving a character value should be

type CHARACTER.

ARTTHMETIC ASSIGNMENT STATEMENT

The arithmetic assignment statement has the following format:
target = arith-expr

where:

target is the name of a variable or array element of type
INTEGER*2, INTEGER*4, REAL, DOUBLE PRECISION, |REAL = *16,
(OMPLEX, OR|COMPLEX*16.
arith-expr is an arithmetic expression
If the data types in the assignment statement differ, F77 will not
assign the value of arith-expr directly. Instead, F77 will convert the
value of arith-expr to the type of target, and then assign the value.
Table 4-1 describes the conversions and assigments carried out in such
cases,

Here are some examples of arithmetic assignment statements:

SUM = (X + Y) /*real variable SUM receives
the sum of X + Y,

A(I) = B**%4,1 /*element I of array A receives
the value of B**4,1

Fourth Edition 4-2

Table 4-1

ASSIGNMENT STATEMENTS

Conversion Rules for Mixed-type Assignments
(The routines are described on the following page)

ASSIGN*

ASSIGN*

ASSIGN*

Target Type
Value i e
Type I*2 T*4 REAL DOUBLE = R*16 c*8 C*16
1% ASSIGN EXTEND FLOAT DFLOAT = QFLOAT FLOAT DFLOAT
ASSIGN ASSIGN ASSIGN = ASSIGN ASREAL = ASREAL
1% TRUNC ~ ASSIGN FLOAT DFLOAT = QFLOAT FLOAT DFLOAT
ASSIGN ASSIGN ASSIGN | ASSIGN @ ASREAl, = ASREAL
REAL SFIX LFIX ASSIGN DFIOAT | QFLOAT = ASREAL = DFLOAT
ASSIGN ASSIGN ASSIGN | ASSIGN ASREAL,
DOUBLE SFIX LFIX FLOAT ASSIGN | QFLOAT @ FLOAT ASRERL
ASSIGN ASSIGN ASSIGN ASSIGN ASREAL,
R¥16 SFIX LFIX FLOAT DFLOAT ASSIGN FIOAT DETOAT
ASSIGN ASSIGN ASSIGN ASSIGN ASREAL ASREAL
C*8 SFIX* LFTX* ASSIGN* DFLOAT* = QFLOAT* ASSIGN DFLOAT
ASSIGN* ASSIGN* ASSIGN* | ASSIGN*
| C*X16 SFIX* LFIX* FLOAT* ASSIGN* QFIOAT* FLOAT ASSIGN
-- BSSIGN* ASSIGN

Fourth Edition

FORTRAN 77 Reference Guide

Table 4-1 (continued)
Conversion Rules For Mixed-type Assignments

Operation

Action

ASSIGN

ASREAL

SFIX
LFIX

FLOAT

TRONC

preLoRT

Assign value (after any indicated conversion) to the
target.

ASSIGN value as above to the real part of a complex
number, and set the imaginmary part of the complex
number to zero,

Truncate fractiomal part and comnvert result to a
short integer. Overflow may occur.

Truncate fractional part and convert result to a long
integer. Overflow may occur.

Convert value to REAL form, Loss of precision may
occur if the arqument was DOUBLE PRECISION,

| (OMPLEX*16, or INTEGER*4, Overflow may occur with

DOUBLE PRECISION or COMPLEX*16 .,

iGonvert value to IIJUBLE PRECISION form.
‘E:_f':Convert‘ value to REAL*IS form.

Prefix the short integer with 16 binary zeros or ones
if the short integer was positive or nedative,
respectively, This cannot change the value or sign
of the integer.

Discard the 16 high-order bits of the 1long integer.
A value outside the short-integer range will be
altered, and possibly changed in sign, by this
operation,

Note

An asterisk affixed to an operation involving a complex
number indicates that the operation is to be performed
on the real part only. The imaginary part is not
involved. When no asterisk is present, the operation
is to be performed on both parts of the number.

Fourth Edition 4-4

S,

ASSIGNMENT STATEMENTS

LOGICAL ASSIGNMENT STATEMENTS

The logical assigment statement has the following format:

target = logical expression

where:

target is the name of a logical variable or logical array
element,

logical expression is a logical expression that must result in
a value of .TRUE. or .FALSE,

Same examples of logical assignment statements:
ON = A ,LT. 3 /*CON receives .TRUE. or .FALSE.
depending on A.

X = ,FALSE. /*variable X receives .FALSE.

CHARACTER ASSIGNMENT STATEMENT

The character assignment statement has the following format:
target = character expression

where:

target is the name of a character variable, character array
element, or character substring of type CHARACTER.

character expression 1is a character expression that must be of
character data type whose length need not match target. In
such cases, the value of character expression will be truncated
or blank-extended so that it matches the length of target, then
assigned.

Here are some examples of character assignment statements:

WORD = 'BELLS'
TREE(1) = 'MERRY_CHRISTMAS'

NAME = 'JINGLE' // WORD

4-5 Fourth Edition

FORTRAN 77 Reference Guide

ASSIGN STATEMENT

The ASSIGN statement has the following format:

ASSIGN s to i

where:

S is a statement label of an executable statement

i is an integer variable name
An ASSIGN statement must be executed prior to an ASSIGNED GO TO. Once
i has been assigned, it may be used only in an ASSIGNED GO TO until it
has been given an integer value by an arithmetic assignment. See
Chapter 5 for a discussion of GO TO statements.
Some examples of the ASSIGN statement:

ASSIGN 90 TO NUM /* assigns statement label 90

to variable NUM,

ASSIGN 300 TO FOOKA /* POOKA must have been declared
as an integer variable.

Fourth Edition 4-6

Control Statements

Your program begins executing with the first executable statement that
appears in the main program and continues executing the statements in
order until a transfer of control interrupts the sequence. A transfer
of control can be in the form of a procedure reference or a control
statement.
This chapter discusses the following control statements:

e GO TO

e IF

e DO

® C(ONTINUE

e STOP

® PAUSE

e END

For information on the procedure reference statements, FUNCTION, CALL,
and RETURN, see Chapter 8.

5-1 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

GO TO STATEMENTS

GO TO statements transfer control to some other executable statement in
your program that may not be the next instruction in the normal
sequence., There are three kinds of GO TO statements:

@ Assigned GO TO

e Computed GO TO

@ Unconditional GO TO

Assigned GO TO Statement

An Assigned GO TO statement transfers control to an integer variable
that has been defined as a result of an ASSIGN statement. The integer
variable has a value that is the statement label of an executable
statement in the same program.

The Assigned GO TO statement has the following format:
GoT i [[,] (s [,s]...)]

where:

i is an integer variable name.

s is the 1label of an executable statement in the program unit
containing the assigned GO TO. The list of s's is optional.
If it appears, the statement label assigned to 1 must be one of
the labels in the list.

The F77 compiler permits 254 labels in an Assigned GO TO.

Here are some examples of the Assigned GO TO statement:
ASSIGN 50 TO NUM /*This is the same as an
GO TO NUM unconditional GO TO 50.

ASSIGN 300 TO ISTART
GO TO ISTART, (99,100,300,400) /*This is the same as an
unconditional GO TO 300.

The Computed GO TO Statement

A Computed GO TO statement transfers control to a statement
corresponding to a value in the Computed GO TO expression.

Fourth Edition, Update 2 5=2

" N

.

o

CONTRQL: STATEMENTS

The Computed GO TO statement has the following format:
GOTO (5 [48)ees) T4l i

where:
i is an integer expression.

s is the statement label (an integer number) of an executable
Statement appearing in the same program unit as the Computed
GO TO statement. The same statement label may appear more than
once in the same Computed GO TO statement. Control is
transferred to the statement whose label is in the i'th
position in the list of s's. If there is no i'th statement,
control passes to the next executable statement.

Same examples of the Computed GO TO statement:

I=2 /*The next executable statement
GO TO (10,20,30,40),I is statement 20.

M= 4 /*The next executable statement
GO TO (99,100,199,200) ,M is statement 200.

Unconditional GO TO Statement

An unconditional GO TO statement transfers oontrol to the statement
label of an executable statement in the same program unit.

The unconditional GO TO statement has the following format:
GO 10O s

where:

s is the label of an executable statement that is in the same
program unit as the unconditional GO TO statement.

Here are some examples of unconditional GO TO statements:
GO TO 1000 /*Control is transferred to
executable statement 1000

GO TO 90 /*Control is transferred to
statement 90.

5-3 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

IF STATEMENTS

IF statements make a comparison and then make a decision based upon
that comparison. IF statements oonditionally transfer control or

conditionally execute a statement or a block of statements.
The three types of IF statements are:

® Arithmetic IF

e Logical IF

e Block-IF (IF...THEN, FLSE IF...THEN, ELSE, END IF).

Arithmetic-IF Statement

The arithmetic-IF statement transfers oontrol to one of
statements based upon the value of an expression.
The arithmetic-IF statement has the following format:

IF (exp) labell, label2, label3

where:

three

exp is an arithmetic expression with an integer, real, or

double precision value.

labell, label2, label3 are 1labels of executable statements

within the current program unit.

When exp is evaluated, control passes to
labell if the value of exp is negative
label2 if the value of exp is zero

label3 if the value of exp is positive

Fourth Edition, Update 2 5-4

CONTR(L, STATEMENTS

Here is an example of the arithmetic-IF statement:

IF (X - 90) 10, 20, 30
10 A=B*C
20 A=B/C
30 STOP

END

In the above example, if the value (X - 90) is negative, control
passes to the statement at label 10. If (X - 90) is zero, control
passes to the statement at label 20. If (X - 90) is positive,
control passes to the statement at label 30.

Note

The arithmetic-IF statement is considered to be obsolete. Although
this statement is still supported, it is recommended that you use
the block-IF statement instead.

Logical-IF Statement

The logical-IF statement evaluates a logical expression, and then,
based upon one of two possible results, executes a single FORTRAN
statement.

The logical-IF statement has the following format:
IF (exp) stmt

where:
exp is a logical expression.
stmt is any valid executable statement except a DO,
block-IF, ELSE-IF, ELSE, END-IF, or another logical-IF
statement.
If exp evaluates to .TRUE., then stmt is executed. If exp

evaluates to .FALSE., then control passes to the next
executable statement after the logical-IF.

5-5 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Here are examples of the logical-IF statement:
IF ((SALES .GE. 50.0) .OR. (PROFIT .EQ. 100)) GO TO 999
IF (MAXVAL) CALL SUBR
IF (A .LE. 500) S=8 * C

In the above examples, if the value of the logical expression (exp) is
true, then the statement (stmt) is executed.

Block-IF Structure

The block-IF structure evaluates a logical expression, and either
executes or does not execute a group of statements.

A block-IF structure consists of an IF...THEN statement and an END IF
statement. The IF...THEN statement is the first statement. In
addition, the block-IF structure may contain ELSE IF...THEN and ELSE
statements. A block-IF structure may also contain additional
IF...THEN, and END IF statements (see "Block-IF Nesting" below.)

Here are some of the more common constructs that the block-IF structure
may take:

IF exp THEN
statement—group-1
END IF

IF exp THEN
statement-group-1
ELSE
statement-group-2
END TIF

IF exp THEN
statement-group-1
ELSE IF exp THEN
statement-group-2
END IF

Fourth Edition, Update 2 5-6

A

CONTR(L, STATEMENTS

IF exp THEN
statement—-group-1
ELSE IF exp THEN
statement—group-2
ELSE
statement—group-3
END IF

where:
exp is a logical expression.

statement—group-i is any number of executable statements (including 0)

which follow an IF...THEN, ELSE IF...THEN, or an ELSE statement.
Statement groups may not follow an END-IF statement.

Statements in the Block-IF Structure: This describes the unnested
situation. See "Block-1F Nesting" below for the nested situation.

e An IF...THEN statement is the first statement in the block-IF
structure. If the logical expression in the IF...THEN statement
is true, then the statement group following the IF...THEN
statement is executed. Control then passes to the next
executable statement following the END IF statement. If the
logical expression in the IF...THEN statement is false, control
drops down to the next statement after the statement group for
the IF...THEN statement. The next statement may be an
FL.SE IF...THEN, an ELSE, or an END-IF statement. Each IF...THEN
must be on a line by itself.

@ An FLSE IF...THEN statement is evaluated when the logical
expression in the IF...THEN statement is £false. If the
expression in the ELSE IF...THEN statement is found to be false,
then control is passed on to the next statement after the
statement group for the ELSE IF...THEN statement. If the value
in the ELSE IF...THEN statement is true, then the statement
group associated with the ELSE IF...THEN statement is executed.
Control then passes to the next executable statement following
the END IF statement. There may be any number of ELSE IF...THEN
statements in the block-IF structure (see Block-IF Nesting
below). The ELSE IF...THEN statement is optional.

® The ELSE statement and its statement group are executed only
when all previous logical expressions in either the IF...THEN or
any ELSE IF...THEN statements are false. The ELSE statement is
optional. The ELSE statement may appear only once in each
block-IF structure. When used, the ELSE statement follows the
IF...THEN statement and ELSE IF...THEN statements.

® The END IF statement terminates the entire block-IF structure.
There is only one END IF statement in each block-IF structure.

5-7 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Block-TF Considerations: The END statement may not be used within the
block-IF structure.

Trangfgr of control into a block-IF from outside of that block is
prohlblted. Entry may occur only when program execution reaches the
initial IF statement.

When a DO loop is present in a block-IF, it must be wholly contained in
the statement group in which it begins. Similarly, when a block-IF is
present in a DO loop, it must be wholly contained in the body of the DO
loop.

Here is an example of the block-IF structure:

IF (X .GT. 360) THEN
S=8+X-360
N=N+1

ELSE IF (X .HQ. 360) THEN
S=8+X
N=N+1

ELSE IF (X .HQ. Z) THEN
S=8+X+72
N=N+1

ELSE
S=8+X
Z=X+N

END IF

Block-IF Execution: When the logical expression in an IF...THEN,
ELSE IF...THEN, or an ELSE statement is true, the statement group
associated with that expression is executed. Control drops down to the
end of the Block-IF structure.

When the logical expression in an IF...THEN, ELSE...IF, or an ELSE
statement is false, then the statement group associated with that
expression is ignored. Control drops down to the next ELSE IF...THEN,
ELSE, or END IF statement in the block-IF structure.

At most, only one statement group in a Block-IF structure is executed.

Block-IF Nesting: A block-IF structure may be included , in the
statement group of another block-IF structure. The nested block-IF
structure must be completely enclosed within the statement group. When
Block-IFs are nested, the compiler matches an ELSE statement with the

most recent IF...THEN statement.

The ELSE IF...THEN, ELSE, and END IF statements of a nested block-IF
are local, and do not affect the flow of ocontrol of the containing

Fourth Edition, Update 2 5-8

N

CONTRQL: STATEMENTS

block-IF. Nested block-IFs should be indented to J:,ndicate this
independence. It is a good programming practice to indent nested
block-IFs.

Here is an example of nested block-IFs:

IF (X .GT. 360) THEN
S=85+X
IF (Y - Z .LE. 340) THEN

The program segment above uses indentation to demonstrate the use of
nesting levels. Use the -NESTING compiler option to see how the
FORTRAN 77 compiler interprets the indentation.

DO STATEMENT

A DO statement sets up a loop that begins at the DO statement and
executes zero or more times. The DO statement executes all the
statements between the DO statement and its corresponding label. The
DO statement has the following format:

DO lab [,] var = intval, maxval [,incr]

where:

lab is the label of an -executable statement that must follow the DO
statement in the same program unit. This is called the terminal
statement of the DO loop.

var is an integer or real variable, called the DO variable.
intval, maxval, incr are arithmetic constants or expressions that

represent the initial value, the terminal wvalue, and increment
parameters, respectively.

The range of the DO statement includes all the statements between it

b0 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

and the terminal statement. The teminal statement must not be one

the following:

® Unconditional or assigned GO TO statement
® Arithmetic IF statement

® Any block IF statement

® RETURN, STOP, or END statements

® DO statement

Execution of a DO Statement

The following steps are followed when a DO statement is executed:

of

1. intval, maxval, and incr are evaluated to establish values for
the initial, terminal, and increment parameters, respectively,

including conversion to the type of the DO variable, var,

if

necessary. If incr is omitted, the increment parameter

defaults to a value of one. incr cannot evaluate to zero.

2. The value of the initial parameter is assigned to the DO

variable.

3. The iteration count (number of times to execute the body of the

DO loop) is determined by the following expression:

INT ((maxval-intval+incr)/incr)

If the iteration count is zero or less, the body of the DO loop

will not be executed.

4. If the type of the DO variable is integer, then the expected
final value that it will contain upon normal temmination of the
DO loop will be calculated. This final value is the first

value which wvar would contain, as a result of

normal

incrementation, that is greater than maxval if incr is greater

than zero, or less than maxval if incr 1s less than zero.

If the type of the DO variable is real, then its final value

will not be calculated.

5. The DO loop variable must not be altered inside the range of
the loop. A Severity 2 error message appears if the compiler
detects the appearance of the DO-LOOP variable on the lefthand
side of an assignment statement. A Severity 1 warning is
issued if the variable is being passed as an actual argument,

due to its potential for modification.

Fourth Edition, Update 2 5-10

.

—

CONTRCQL, STATEMENTS

Example:

* The DO variable ID is initialized to equal 3
* The intval is 3
* The maxval is 10

* - when ID => 10 the program stops

2 executing the loop and continues

* The incr is 2

i -must be declared if any value other than 1

* The lab, 210, is the statement number (label) of the last

* —statement that will execute as a part of the
-loop

DO 210 Ip = 3, 10, 2

210 CONTINUE

STOP
END

Execution of the Range of DO Statements

After execution of the DO statement, statements in the range of the DO
loop will be executed, up to and including the temminal statement,
provided that the calculated number of iterations is greater than zero.
The DO variable may not become redefined during execution of the DO
loop. Variables in the expressions for the initial, terminal or
increment parameters can be modified inside the loop without affecting
the number of times the DO loop will execute.

Iteration Control

After completion of the DO loop body, incrementation of the DO variable
by the value of the increment parameter occurs. There are different
methods employed to determine when to temminate execution of the DO
statement:

1. 1If the type of the DO variable is integer and if the value of
the DO variable has not yet reached the expected final value
computed during processing of the DO statement, then the body
of the DO loop will be executed again.

2. If the type of the DO variable is real, then the iteration
count is decremented by one and the loop body will be executed
again until the iteration count reaches zero. Note that the
number of actual iterations of a loop controlled by a real DO

5-11 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

variable may not be what is expected, due to rounding errors.

When iteration control terminates execution of the DO loop, program
control passes to the statement immediately following - the last
statement in the loop, and the DO variable retains the value it had
when execution of the loop teminated. Execution of a DO loop may also
be terminated by a statement within the loop that branches out of the
loop. In this case, the DO variable retains its current value.

Nested Loops and Transfer of Control

DO loops may be nested within other loops, provided that the range of
each loop is completely contained within the range of the next

outermost loop. Nested DO loops may share a labeled teminal
statement.

?ere is an example which correctly demonstrates the use of nested DO
oops.

DO 400 M=1, 3 /* FIRST LEVEL LOOP
JO=J0+ M

DOGO0K =1, 4 /* SECOND LEVEL LOOP
JO=J0+ K

IF ((K .GT. M) .XOR. (K .GT. J)) 1A =2

DO 550 I, = LA, 5 /* THIRD LEVEL LOOP

JO=JO0+ L
PRINT*, JO, N, L

550 CONTINUE /* END OF THIRD LEVEL LOOP
PRINT*, JO, K, N

600 CONTINUE /* END OF SECOND LEVEL LOCP
PRINT*, JO, N, M

400 CONTINUE /* END OF FIRST LEVEL LOOP

STOP
END

Restrictions on Transfer of Control

Program control may not transfer to a statement within a DO loop;
therefore, extended-range DO loops are not supported. Control may be
transferred from a nested loop to an outer one, but may not be
transferred from an outer loop imwards. Two or more nested DO loops
can share the same terminal statement. However, any transfer of
control to a statement that is not within the innermmost DO loop is
considered to be a transfer from an outer loop into an inner loop,

Fourth Edition, Update 2 5-12

CONTRQL, STATEMENTS

because the terminal statement is within the range of the innermost
loop.

Here is an example that demonstrates an invalid attempt to pass control
from outside a DO loop to a label with the range of a loop.

DO600K =1, 4 /* FIRST LEVEL LOOP
JO=JO0 + K
NUN = 4
IF ((K .GT. M) .XOR. (K .GT. J)) LA =2
DO 550 L = LA, 5 /* SECOND LEVEL LOOP
N=N+1
IF (NUN .HQ. LA + 2) GO TO 600
JO=J0+L

525 PRINT*, JO, N, L

550 CONTINUE /* END OF SECOND LEVEL LOOP
PRINT*, JO, K, N
IF (NUN .HQ. 4) GO TO 525

600 CONTINUE /* END OF FIRST LEVEL LOOP
PRINT*, JO, N, M

STOP
END

In the example above, the statement
IF (NUN .EQ. 4) GO TO 525

invalidly attempts to pass control from the second level DO loop to the
first level DO loop. However, the statement:

IF (NUN .ED. LA + 2) GO TO 600
has a wvalid target label (600). Control is conditionally transferred
outside the loop.

FIN Compatibility of DO Loops

When programs are compiled with the compiler option -DOl, F77 will
generate DO loops that execute similarly to those generated by FIN. In
addition to this, F77 does not impose the syntactical restrictions on
the DO statement that FIN does, so that any valid FORTRAN-77 standard
DO statement will be compilable under "-DO1". : i

Differences in the behavior of DOl loops as opposed to FORTRAN-77 loops
are outlined here: .

® DOl loops always execute at least once.

5-13 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Extended-range DO loops are permitted. This occurs when a DO
loop contains a statement that transfers control outside of the
loop to a sequence of one or more statements, the last of which
will transfer control back into the DO loop.

Evaluation of the temminal and increment parameters of the DO
statement occurs differently in different cases: ;

If these parameters are scalar variables, then they are
reevaluated during each iteration of the loop. Therefore,
modification of them in the range of the DO loop will affect the
number of times the loop executes.

If these parameters are expressions, then they are evaluated
only once during execution of the DO statement, and not during
each iteration. Modification of any variables that appear in
such expressions will not, therefore, affect the number of times
the DO loop executes. Furthermore, such loops cannot define an
extended-range, and F77 will issue a warning to that effect when
it encounters such a situation.

DO WHILE Statement

A DO WHILE statement permits loop iteration to execute an indefinite
number of times, based on the value of the logical expression being

true. The DO WHILE statement can have one of the following formats:
Format 1
DO _s_[,] WHILE (e)
s stat_:ement
where:

s is the label of a statement that must physically follow in the
same program unit.

e is a logical expression.

statement is any valid FORTRAN DO loop terminal statement or
END DO.

Fourth Edition, Update 2 5-14

. CONTRQL STATEMENTS

For example:

N=10
M=1
DO 100, WHILE (M .LT. N)
ARRAY (M) = 1.1
M=M+1
100 CONTINUE

Format 2

DO WHILE(e)

END DO

where:
e is a logical expression.
For example:

- N=10
=1
DO WHILE (M .LT. N)
ARRAY (M) = 1.1
M=M+1
END DO

Execution of a DO WHILE Statement

The DO WHILE statement is different from a DO statement because it
executes for as long as a logical expression contained in the statement
continues to be true.

In the examples above, an array is initialized until the ocondition in

the DO statement is false. In both cases the condition (M .LT. N)
becomes false when M=10.

5-15 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Nested DO WHILE Loops

DO WHILE loops may be nested according to the following conditions:

e Each labeled DO WHILE must be closed with a matching labeled
statement.

® Fach unlabeled DO WHILE must be closed with an unlabeled END DO.

An unlabeled END DO may have only one DO WHILE 1oop.

END DO Statement

The END DO statement can be used to end the range for both DO and
DO WHILE loops. If the END DO statement is used with a DO statement,
the END DO statement must be labeled.

The END DO statement has the following format:

END DO

CONTINUE Statement

In your program, a CONTINUE statement serves as a point of reference,
and merely transfers control to the next executable statement.

The CONTINUE statement has the following format:
CONTINUE

A (ONTINUE statement is usually used to indicate the end of the range
of a DO loop; however, you can use it anywhere in your program where
an executable statement is allowed.

For example:

SUM = 6.5
DO 10 K=1
SUM = SUM

10 CONTINUE

;5
+ A(K)

Fourth Edition, Update 2 5-16

i,

CONTRQL STATEMENTS

STOP Statement

The STOP statement terminates the execution of your program.

The STOP statement has the following format:
STOP [n]

where:

n is an optional decimal number of up to five digits or a
character constant.

A STOP statement halts program execution, closes all file units
referenced by the program, prints #****STOP n at your termninal, and
returns control to PRIMOS. A STOP statement may appear anywhere in a
program unit. In a main program, an END without a STOP causes a STOP
to occur autcomatically.

PAUSE Statement

A PAUSE statement temporarily suspends execution of your program until
you or an operator intervenes.

The PAUSE statement has the following format:

PAUSE [n]

where:

n is an optional decimal number of up to five digits, or is a
Character constant.

Using this statement will halt your program and display a ****PAUSE n
message on your terminal. Program execution will remain suspended
until you type the PRIMOS command START. Execution begins at the next
executable statement following the PAUSE.

For example:

OK, RESUME CIRCLE

ZBTYPE IN A VALUE FOR THE RADIUS OF THE CIRCLE:
*%%% PAUSE

OK, START

THE AREA OF THE CIRCLE IS: 144.713

kkkk S'IOP

OK,

5-17 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

END Statement

The END statement is the £final statement of a program, subroutine
(including a BLOCK DATA subprogram), or external function. It tells
the compiler that it has reached the physical end of the program unit.

The END statement has the following format:

END

In a main program, END implies STOP if no STOP statement precedes it.
In a subprogram, END implies RETURN if no RETURN statement precedes it.

Fourth Edition, Update 2 5-18

Input/Output
Statements,

Data Storage, and
File Types

Input is the transfer of data values from a file to internal storage.
Output is the transfer of data values from storage to a file. Input
and output statements control these transfers, and may also specify the
representation of the data values on the file. 1In addition to the F77
input/output statements used in the transfer of data, this chapter also
discusses:

@ [77 data storage

@ Records

® Files and programs

e List and namelist directed I/O
The following discussion is intended as a review, to establish the
context in which FORTRAN I/0 commands operate, If you are not familiar
with the features mentioned, please consult one of the suggested
textbooks in Chapter 1.
Input/Output in FORTRAN 77 is based on logical records stored in files.
The physical aspects of record and file storage are not dealt with by

the language. Therefore, the following descriptions are concerned only
with the logical structures involved.

6-1 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

F77 DATA STORAGE

A file is a collection of related records. A file may be empty, or may
contain one or more records. Each record is a part of the file because
it contains data items similar to all the other records in the file. A
record has up to 2048 bytes and is the basic unit of data transfer.

Every open file has a pointer. When a file is first opened, its
pointer is positioned before the first record. For data transfer, the
pointer first moves to the beginning of the selected record (direct
access) or the next record in the file (sequential access), then sweeps
across the record as the record is read or written. After data
transfer, the pointer remains at the end of the record just read or
written, or after the endfile record if one was written or encountered.

Types of Records

There are three types of records:
@ Formatted
® Unformatted
® Endfile
No file may contain both formatted and unformatted records.
Formatted Record: A formatted record consists entirely of Prime ECS

characters. Such a record may be read or written only by formatted
input/output statements containing explicit format specifiers.

Unformatted Record: An unformatted record contains data in the same
form 1in which it is actually used by the computer. No format list is
used when it is accessed. The data is transcribed directly to or from
the storage medium.

Endfile Record: BAn endfile record is written by an ENDFILE statement.
It may occur only as the last record of a sequential file. If an
endfile record is encountered during a READ, the system will be
informed that the file has been exhausted. See the discussion of the
ENDFILE statement later in this chapter.

Fourth Edition, Update 2 6-2

—

.

INPUT/QUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

Record Lengths

The record length of formatted records is measured in characters
(bytes) while the length of unformatted records is measured in 16-bit
halfwords. Formatted and unformatted records may be stored in either
fixed or variable length form. No file may contain both fixed and
variable length records.

Fixed Length: A file of fixed-length records is produced when the RECL
{record length) option is given in the OPEN statement creating the
file. All records written to the file will be of the length specified.

Use of the RECL option for a sequential-access file is an F77
extension. (For a complete description of the RECL option refer to the
OPEN statement presented later in this chapter.)

Varying Length: A file of variable-length records is produced when the
RECL, option is omitted from the OPEN statement creating the file. Each
record will have the length needed to hold its data, up to the current
maximum record length. See INCREASING MAXIMUM RECORD LENGTH later in
this chapter. Files of variable-length records cannot be used under
direct access.

Implementation: The following information is significant when space
conservation on disk files is a major concern.

Files of variable-length records are kept in compressed ASCII format.
Sequences of blanks are replaced by one instance of the blank
character, a compression indicator, and a repeat count. All such files
are processed through Physical Device 7. Compressed format saves disk
space, but requires some additional processing time to ocompress and
uncompress the records.

Files of fixed-length records are kept in uncompressed ASCII format.
Records are stored just as they are created by the program, with no
compression. All such files are processed through Physical Device 8.

Uncompressed format can be quite wasteful of space, but I/O on

gnoompressed files is faster than on compressed files because no time
is spent compressing and decompressing the records.

Types of File Access

There are two types of file access:
® Sequential

e Direct

6-3 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Sequential Access: With sequential access, the file pointer can move
only one record at a time, either forward or backward, or it may be
positioned at the beginning of the file.

Direct Access: With direct access, the file pointer may be positioned
to the beginning of any record in the file,

Types of Files

The terms SAM and DAM refer to the basic file organization PRIMDS uses
to implement files. These organizations are not specific to any one
language. The terms sequential access method and direct access method
refer to the two types of file access offered by the FORTRAN 77
language. Either type of FORIRAN file could be implemented using
either PRIMOS file organization. The implementation used is
transparent at the programming level, and is subject to change. See
the Subroutines Reference Guide.

SAM Files: 1In a SAM file, the records are stored in the order they
were written, and are usually read in that order. New records can be
added only to the end of the file, and records cannot be deleted. SAM
files can be read or written only under sequential access. SAM records
may be of fixed or variable length.

DAM Files: In a DAM file, the record are stored in a manner that
enables direct access. New records can be added anywhere in any order.
Existing records can be deleted by overwriting them. DAM files must be
written only under direct access, but can be read by either direct or
sequential access. DAM records must always be fixed-length. Every
record in a DAM file is identified by a key (a positive integer). This
key is specified when the record is written. Under direct access, a
record is retrieved by giving its key in a direct access READ
statement. Under sequential access, a DAM file acts like a SAM file to
which the records were written in order by key. A record is retrieved
by reading through the file until it is reached.

Caution

A direct access file must not be modified by the EDITOR, EMACS,
or any sequential data transfer statement, or its usefulness
for direct access will be partly or wholly lost.

Fourth Edition, Update 2 6-4

P

INPUT/QUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

Internal Files

Intermal files provide a way to convert data from one form to another
within main memory. An internal file is an area of memory where a type
CHARACTER variable, array, array element, or substring is stored. Such
an area acts as an internal file when the name of the data item stored
there is given in place of the file uwnit number in a formatted,
sequential READ or WRITE statement.

The READ or WRITE proceeds as uswmal, but the "file" used is the
designated internal storage area, rather than an external file on
secondary storage. Data is transferred to or from the file area, after
conversion as directed by the associated format list, List directed
formatting is not permitted with internal READ or WRITE statements.

After each read or write file the pointer returns automatically to the
beginning of the record.

The characteristics of an internal file are as follows:

@ An internal file consists of a character variable, character
array, or character substring.

e A record of an internal file is a character variable, an element
of a character array or character substring.

e If the file is a character variable, character array element, or
a character substring then it consists of a single record whose
length is the same as the length of either the variable, array
element, or substring. When the file is a character array, it
is treated as a sequence of character array elements, and each
array element is a record of the file., The sequence of the file
records is the same as the sequence of the array elements. Each
record of the file is the same length as the length of an array
element.

EDITING F77 FILES

The PRIMDS EDITOR and EMACS text editing utilities produce and expect
SAM files of formatted, variable-length records. A file created with
these attributes by an F77 program may be edited freely. A file
created by EDITOR or EMACS may be opened with formatted,
variable-length records in an F77 program and modified as desired.

EDITOR and EMACS should not be used to modify a SAM file of
fixed-length, formatted records because they will autamatically
compress the file, effectively transforming it to a file of
variable-length records. Neither should they be used on a DAM file,
since they will not maintain the fixed-length records a DAM file
requires. Text editors can be used to examine a fixed-length file
provided it is not modified. EDITOR and EMACS cannot be used to
process unformatted files.

6—5 Fourth Edition

FORTRAN 77 Reference Guide

INCREASTNG MAXTMIOM REQORD LENGTH

When the shared libraries are used in 1linking an F77 program
(unqualified LI command to BIND during linking) records of all types
have a maximum length of 32K bytes. This limit cannot be increased.

When the unshared libraries are used (LI NPFINIB and LI IFINLB to BIND
during loading), the maximum record size is initially 256 bytes, but it
may be increased to a maximum of 32K bytes. When records longer than
256 bytes are needed, the PRIMOS I/0 Control System (IOCS) must be
notified. Two aspects of IOCS are involved:

® The size specified by the variable in the I/0 size-control block
F$IOSZ.

® The size of the I/O buffer FSIOBF. This buffer is discussed
further under DATA TRANSFER STATEMENTS later in this chapter.

Specifications to IOCS must be given in halfwords. To increase the
maximum record length, proceed as follows:

1. Increase the value specified in F$IOSZ to the desired record

length by inserting the following statements into the main
program:

COMMON/F $IOSZ,/MAXSIZE
INTEGER*2 MAXSIZE/halfwords/

where halfwords is an integer constant giving the desired
record length in two-byte halfwords (half the length in bytes).
2. Increase the size of FSIOBF to the desired record length by

inserting the following statements into the main program:

CQOMMON/F SIOBF/BUFSIZE
INTEGER*2 BUFSIZE(halfwords)
where halfwords is as above,
Any variable names could be used in place of MAXSIZE and BUFSIZE.
No special action is needed to obtain the maximum record size when

using the shared libraries, since they automatically provide a MAXSIZE
and BUFSIZE of 16K halfwords (32K bytes).

Fourth Edition 6—6

N

INPUT/QUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

Note

The value in F$IOSZ and the size of FSIOBF set an upper size
limit on all records, but do not determine the actual record
size for any particular file. The actual record size for a
fixed-length file is determined by the RECL option in the OFEN
statement for the file. Argquments to RECL must be given in
bytes. For a formatted file, the arguments given must be in
byvtes, but for an unformatted (binary) file, the number is in
halfwords., For variable-length files, including the terminal,
it depends on the individual record.

FILES AND PROGRAMS

Before a program can read or write a file, the programmer must
establish a connection between the file and the program. This is
accomplished by assigning a device if necessary, and by opening the
file on a FORTRAN unit.

Assigning a Device

When a file is on the card punch or reader, the paper tape punch or
reader, a magnetic tape drive, or is being written directly to the line
printer without the use of SPOOL, the device must be assigned, using
the PRIMDS ASSIGN command, before program execution begins, See the
Prime User's Guide.

Opening a File on a File Unit

A file unit is a numbered channel through which data passes between a
program and a file. Every file except the user's terminal, which is
always open on FORTRAN unit 1, must be connected to a file unit prior
to data transfer. There are three ways of doing this:

e With the FORTRAN 77 OFEN statement, This is the recommended
way.

@ With a call to one of the PRIMS file-opening subroutines.
These provide more power and flexibility than the FORTRAN 77
OPEN, but these advantages are usually not needed. See the
Subroutines Reference Guide for details on the PRIMDS
file-opening subroutines,

e With a PRIMDS OPEN command executed before the program is run.
This is known as preconnection.

6—7 Fourth Edition

FORTRAN 77 Reference Guide

A preconnected file may be opened agin within the program, and
additional attributes added to the connection. In case of conflicting
attributes, those specified within the program take precedence.

Caution

PRIMS and F77 use different numbering systems to describe
their set of file units. When a file wnit is referenced in
F77, its FORTRAN unit number must be used. When it is
referenced in a PRIMDS subroutine call, the oorresponding
PRIMOS Funit number must be given instead. Beware of confusing
the two descriptive systems. See Table 6-1.

Integer arquments to most PRIMDS subroutines must be INTEGER*2,

Fourth Edition 6-8

-

INPUT/QUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

Table 6-1
Devices and Their Default FORTRAN Unit Numbers

FORTRAN

Unit Number PRIMDS Device
1 User terminal
2 Paper tape reader or punch
3 MPC card reader
4 Serial line printer
5 Funit 1
6 Funit 2
7 Funit 3
8 Funit 4
9 Funit 5
10 Funit 6
11 Funit 7
12 Funit 8
13 Funit 9
14 Funit 10
15 Funit 11
16 Funit 12
17 Funit 13
18 Funit 14
19 Funit 15
20 Funit 16
21 9-track magnetic tape unit 0
22 9-track magnetic tape unit 1
23 9-track magnetic tape unit 2
24 9-track magnetic tape unit 3
25 7-track magnetic tape unit 0
26 7-track magnetic tape unit 1
27 7-track magnetic tape unit 2
28 7-track magnetic tape unit 3
29 Funit 17
139 Funit 127
140 Printer unit 0
141 Printer unit 1

The mapping of FORTRAN unit numbers to PRIMOS devices shown here may be
altered for the duration of a program through a call to the PRIM)S

Subroutine ATTDEV. See the Subroutines Reference Guide.

6-9 Fourth Edition

FORTRAN 77 Reference Guide

FILE OPERATIONS

The possible operations on a file and the statements that accomplish
the operation are:

Create a new file (OFEN),

Access an old file (OFEN).

Change file-connection attributes (OPEN).

Determine current status and attributes of a file (INQUIRE).
Transfer data to/from a file (READ, WRITE, PRINT).
Indicate the end of a file (ENDFILE).

Reposition the file pointer (BACKSPACE, REWIND).

Disconnect from a file (CLOSE).

Delete a file (Options in OPEN and CLOSE).

The statements that perform these operations are divided into three
categories:

e

File control statements:

OPEN
CLOSE
INQUIRE

Device control statements:

ENDFILE
BACKSPACE
REWIND

Data transfer statements:

READ
WRITE
PRINT

Fourth Edition 6-10

INPUT/OUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

FILE (QONTRCOL STATEMENTS

File control statements establish, alter, or read out the current
attributes and status of a file. In file control statements, all
integer arguments must be INTEGER*4 and all logical arguments must be
LOGICAL*4, An arqument that is not an expression may be either a
variable or an array element.

OPEN Statement

An OPEN statement may be used to create a new file and establish its
basic properties, or to connect a file to a file unit and establish the
properties of the connection. For a new file, one OPEN statement will
perform both these functions. The same file may be connected with
different properties at different times, but must always be closed
before it is reopened. The BLANK='s specifier is the only specifier
that you can change from its current wvalue to a new value without
terminating the connection of a file to a unit.

The OPEN statement has the following format:

OFEN ([UNIT= Junit# [,FILE= filename] [,STATUS= stat] [,ACESS= acc]
[,FORM= fm] [,RECL= reclngth] [,BLANK= blnk] [,ERR= label]
[,IOSTAT= ios] [,ACTION= act])

where:
UNIT= unit# specifies the logical unit you want to open.

FILE= filename specifies the name of the file to be connected
to the unit.

STATUS= stat specifies the status of the file to be opened.

ACESS= acc specifies whether the type of file access is
sequential or direct.

FORM= fm specifies whether the file is being connected for
formatted or unformatted I/0.

RECL= reclngth specifies the logical record length of a file.

BLANK= blnk specifies the interpretation of blanks in numeric
input fields.

6-11 Fourth Edition

FORTRAN 77 Reference Guide

ERR= label specifies the transfer of control if an error
occurs.

TOSTAT= ios specifies an error status indicator.

ACTION= act specifies whether a file is to be opened for
reading only, writing only, or both, |

The options used may be given in any order, except that if UNIT= is
omitted, wnit# must appear first. The options, their defaults, and the
data types required for the arguments, are described in Table 6-2.

The following is an example of the OPEN statement:

INTEGER*4 STATVAL

CHARACTER*20 ACCTYPE

ACCTYPE = 'SEQUENTIAL'

OPEN (10, FILE= 'YORD', STATUS= 'OLD', AC(ESS= ACCIYPE,

+ FORM= 'FORMATTED', RECL= 25, ERR= 999, IOSTAT= STATVAL)

An existing file named YORD is opened for formatted sequential access
on FORTRAN unit 10. The record length is 25. Should a numeric field
containing blanks be read from the file, the blanks will be deleted.
Should an error occur — for instance if the file does not in fact
exist, or unit 10 is already in use — control will transfer to
Statement 999, and STATVAL will be given a positive value.

PRIMDS File-opening Subroutines: These permit files to be created
interactively at runtime, allow files to be opened with various
protection attributes, and provide other services additiomal to those
of the FORTRAN 77 OPEN statement. See the Subroutines Reference Guide.
See also the Caution under FILES AND PROGRAMS earlier,

Fourth Edition 6-12

INPUT/QUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

Table 6-2

OPEN Statement Options

Option Arqument Data-type Results of Arguments Specified
UNIT= Integer*4 Expression File is opened on the FORTRAN unit
specified.

FILE= Character Expression The file has the name specified. A
pathname may be used. If no FILE= is
specified for a non-scratch file,
the file will be named F#nnn where nnn
is the number of the file unit on which
the file was opened.

STATUS= Character Expression 'OLD': Specified if the file

already exists.

"NEW' : Specified if the file is
being created. A filename
must be specified using the
FILE= option,

'SCRATCH': File is temporary: it will
be automatically deleted at
program end. No filename
may be specified.

"UNKNOWN': (Default) Specified if the
status is not known to the
programmer. The processor
will determine the
appropriate status.

ACCESS= Character Expression 'SEQUENTIAL': (Default) File is
connected for sequential
acecess.

'DIRECT' : File is conrected for

direct access.

FORM= Character Expression 'FORMATTED': (Default under
sequential access) File
is conrected for

formatted data transfer.,

'"UNFORMATTED' : (Default under direct
access)File is connected
for unformatted data
transfer.

6-13 Fourth Edition

FORTRAN 77 Reference Guide

Table 6-2 (continued)
OPEN Statement Options

Option

Argument Data-type

Results of Arquments Specified

BLANK=

IOSTAT=

ACTTION=

Integer*4 Expression

Character Expression

Statement Label

Integer*4 Variable

Character Expression

Sets record length for a file of
fixed-length records in words. Must be
omitted for a file of variable-length
records, Use in sequential access files
is an F77 extension. Required in
direct access files. See page 6-3 for a
discussion of record lengths.

This item specifies treatment of blanks
in numeric input fields when data 1is
read into the file,

"WULL': (Default) All blanks are
deleted, and digits oompressed
to the right side of the input
field. An all-blank field will
be interpreted as a 0 value.

'ZERO': All but leading blanks are
converted to 0's, as in FORTRAN
66.

Control transfers to statement specified
if an error occurs during execution of
the OPEN statement.

Set to 0 if the OPEN statement executes
successfully. Set positive on error in
OFEN-statement execution.

Allows files to be opened for reading
only, writing only, or both.

READ Allows reading and file
positioning operations
to be performed.

WRITE Allows writing and file
positioning operations
to be performed.

READ/WRITE (Default) Allows all
types of I/0 operations
to be performed.

Fourth Edition

6-14

INPUT/QUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

CLOSE Statement

The CLOSE statement disconnects a file from a unit, regardless of the
number of times you've reopened this file and unit. The CLOSE
statement has the following format:

CLOSE ([UNIT=]Junit# [,STATUS= stat] [,ERR= label] [,IOSTAT= ios])

where:

ERR= and IOSTAT= have the same meanings as in the OPEN
statement.

STATUS= determines the final disposition of the file.
The argument stat is a character expression which may have the values:
'KEEP' The file will be retained after it is closed. This
is the default for non-SCRATCH files, and must not be
given for SCRATCH files,
'DELETE"' The file will be deleted after it is closed. Default
for SCRATCH files.
The options used may be given in any order, except that if UNIT= is
omitted, unit# must appear first.
When execution terminates normally, all files opened or referenced in

the program {except QOMD files) are autamatically closed. However,
when execution terminates due to an error, all open files remain open,

6-15 Fourth Edition

FORTRAN 77 Reference Guide

INQUIRE Statement

An INQUIRE statement is used to ascertain the properties of a file, or
of its connection to a file unit. The INQUIRE statement has the
following format:

INQUIRE (FILE= filename or [UNIT= Junit# [,IOSTAT= ios]
[,ERR= s] [,EXIST= ex] [,OPENED= od] [,NUMBER= num]
[,NAMED= rmd] [,MAME= fn] [,ACCESS= acc]
[,SEQUENTIAL= seq] [,DIRECT= dir] [,FORM= fm]
[,FORMATTED= fmt] [,UNFORMATTED= unf] [,RECL= rcl]
[,NEXTREC= nr] [,BLANK= blnk])

where:

FILE= filename specifies the name of the file being inquired
about.

UNIT= wnit# specifies the number of the logical unit being
inquired about.

I0STAT= ios specifies an error status indicator.

ERR= s specifies the transfer of control if an error occurs.
EXIST= ex specifies whether a file or unit exists.

OPENED= od specifies whether a file or file unit is open.

NUMBER= num specifies whether a logical unit is conrected to a
file.

MAMED= rmd specifies whether a file or unit has a name.
NAME= fn specifies the name of the file being inquired about.

ACCESS= acc specifies whether the type of file access is
sequential or direct.

SEQUENTIAL= seq specifies whether sequential access is allowed
or the file.

DIRECT= dir specifies whether direct access is allowed for the
l EO

FORM= fm specifies whether the file is being conrected for
Fformatted or unformatted I/0.

FORMATTED= fmt specifies the record type of the file.

UNFORMATTED= unf specifies the record type of the file,

Fourth Edition 6-16

INPUT/QUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

RECL= rcl specifies the record length of the file for direct
access.

NEXTRC= nr specifies the number of the next record in the file.

BLANK= blnk specifies the interpretation of blanks in numeric
input fields,

Each option acts as a question. When the INQUIRE statement executes,
the variable you supply for each option is set to a value that answers
the question the option asks. The ocorrect data types for the
variables, and the meanings of the various responses, are described in
Table 6-3.

The file must be specified by name (INQUIRE by name) or unit (INQUIRE
by unit) but not both. Options may appear in any order, but no option
may appear more than once, If FILE= (or UNIT=) is omitted, the
filename (or unit#) must appear first.

A variable or array element that may become defined or undefined as a
result of its use in an INQUIRE statement, or any associated data item,
must not be referenced by any other option in the same INQUIRE
statement.

6-17 Fourth Edition

FORTRAN 77 Reference Guide

Table 6-3

INQUIRE Statement Options

Specifier Argqument Data Type Significance of Possible
Values

FILE= Character Expression Specifies file by name.

UNIT= Inteéér*&i“Ex}_:)ression Specifies file by unit
number,

IOSTAT= Integer*4 Zero: no error ocondition

i exists,
Positive: error cordition
exists.

ERR= Statement number Control transfers to
statement indicated if error
occurs during INQUIRE
statement execution.

EXIST= Logical *4 .TRUE, : the file exists (for

B INQUIRE by name) or the unit
exists (for INQUIRE by
unit).

FALSE,: the file or the
it does not exist.

OPENED= Ibgical*ll .TRUE.: the file 1is open

- . (INQUIRE by name) or the
file unit is open (INQUIRE
by wmit).

LFAISE,: the file or the
it is not open.

NUMBER= Integer*4 Variable supplied is set to

the file's unit-number. If
there is none, variable
becomes undefined.

NAMED= Logical *4 .TRUE, : the file has a name.
.FALSE,: the unit has no
name,

= Character Variable is st to the

filename. If none or file
not oonnected, variable
becomes undef ined.

Fourth Edition

6-18

INPUT/OUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

Table 6-3 (continued)
INQUIRE Statement Options

Specifier Arqument Data Type Significance of Possible
Values
ACCESS= Character 'SEQUENTIAL': file open for

sequential access.

'DIRECT': file open for
direct access.

Becomes undefined if file is
closed.

SEQUENTIAL= Character 'YES': file can be connected
for sequential access.

'"ND': cannot oonnect file
for sequential access.

'"UNKNOWN' : suitability of
the file for sequential
access cannot be determined.

DIRECT= Character 'YES': file can be connected
for direct access.

'"NO': file cannot be
connected for direct access.

"UNKNOWN' : suitability of
file for direct aceess
cannot be determined.

FORM= Character 'FORMATTED' : open for
formatted data transfer.

' UNFORMATTED' : open for
unformatted data transfer.

Becomes undefined if file is
not open.

FORMATTED= Character 'YES': file oonsists of
formatted records,

'"ND': file consists of
unformatted records.

'UNKNOWN' : record type
cannot be determined.

6-19 Fourth Edition

FORTRAN 77 Reference Guide

Table 6-3 (continued)
INQUIRE Statement Options

Specifier

Arqument Data Type

Significance of Possible
Values

UNFORMATTED=

NEXTREC=

Character

Integer*4

" Integer'*4

Character

'YES': file oonsists of
unformatted records.

'': file consists of
formatted records.,

'"UNKNOWN' : record type
cannot be determined.

Variable is set to the
record-length for which the
file is open. Becomes
undefined if file consists
of varying-length records or
is closed.

Variable is assigned the
value ntl where n is the
record number of the last
record read or written on a
file connected for direct
acoess, If no records have
been read or written, the
variable is set to 1, If
the file is not oonnected
for direct access, or if the
position of the file pointer
is indeterminate due to a
previous error, the variable
becomes undef ined,

'ZERO': non-leading blanks
in numeric fields will be
converted to Q's,

'"NULL': non-leading blanks
in numeric fields will be
deleted.

If the file is not open for
formatted data transfer, the
variable becomes undefined.

Fourth Edition

6-20

INPUT/QUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

DEVICE (QONTROL. STATEMENTS

These statements apply only to sequential (SAM) files, They reposition
the file pointer, either physically (file on tape) or logically (file
on disk), or write the endfile record that prevents a device from
reading past the end of a file.

BACKSPACE Statement

The BACKSPACE statement moves the pointer of a file open for sequential
access back to the beginning of the previous record. The BACKSPACE
statement has the following format:

BACKSPACE unit#

BACKSPACE ([UNIT=] unit# [,IOSTAT= ios] [,ERR= label])

where:

unit# is an external unit identifier

UNIT= unit# is an expression that evaluates to the integer
number of the unit you want to backspace. UNIT= can be omitted
if unit# is the first argument.

JOSTAT= ios causes ios to become set to 0 if the BACKSPACE
statement executes ~successfully, or, set positive on error in
BACKSPACE statement execution.

ERR= label is a statement label, label where ocontrol will
transfer to on an error,

BACKSPACE may be performed:

@ On any formatted file, except that records written using
list-directed I/0 may not be backspaced over.

e On any unformatted file having a fixed record-length (RECL size
specified in the OPEN statement).
Note :
To use the BACKSPACE statement on a file opened with an ACTION=

WRITE specifier, you must have system read access rights to the
file, ‘ 5

6-21 Fourth Edition

FORTRAN 77 Reference Guide

When a file pointer is positioned after the endfile record, as is
the case after the ENDFILE condition has been raised, BRACKSPACE
will reposition the file pointer before the endfile record. When a
file pointer is at the initial point of the file, BACKSPACE has no
effect,

The BACKSPACE statement cannot be used on an unformatted file with
a variable record length.

Fourth Edition 6-22

INFUT/CUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

REWIND Statement

The REWIND statement repositions the file pointer to the initial
point of a file, either by physically rewinding a tape, or by
resetting a disk file's logical pointer. The REWIND statement has
the following format:

REWIND unit#

RENIND ([UNIT= Junit# [,IOSTAT= ios] [,ERR= label])

where:
unit# is an external wmit identifier

UNIT= unit# is an expression that evaluates to the integer
number of the wnit you want to rewind., UNIT= can be
amitted if unit# is the first argument.

IOSTAT= ios causes ios to be set to 0 if the REWIND
statement executes successfully. Set positive on error in
REWIND statement execution.

ERR= label is a statement label, label where control will
transfer to on an error,

When a file pointer is at the initial point of the file, REWIND has no
effect.

6-23 Fourth Edition

FORTRAN 77 Reference Guide

ENDFILE Statement

The ENDFILE statement writes a device-specific endfile record on the
file connected to the FORTRAN unit unit#. The pointer is left
positioned after the endfile record., This statement can also be used
to truncate disk files. ‘The ENDFILE statement has the following
format:

ENDFILE unit#

ENDFILE ([UNIT= Junit# [,IOSTAT= ios] [,ERR= label])

where:
unit# is an external unit identifier

UNIT= unit# is an expression that evaluates to the integer
number of the unit you want to write an endfile record, UNIT=
can be amitted if unit# is the first argument.

IOSTAT= ios causes ios to be set to 0 if the ENDFILE statement
executes successfully. Set positive on error in ENDFILE
statement execution.

FRR= label is a statement label, label where oontrol will
transfer to on an error.

The following rules apply to the ENDFILE statement:

® On a sequential tape file, an endfile record must be explicitly
written following the last data record.

e On a sequential disk file, the computer will supply an endfile
record autamatically whenever one is appropriate., However, use
of an explicit ENDFILE statement for such files is strongly
recommended, for compatibility with other systems.

e On a DAM file, no endfile record should ever be written. If one
is, unpredictable and undesirable results will occur.

Fourth Edition 6-24

-

INPUT/OUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

DATA TRANSFER STATEMENTS

These statements control the actual transfer of data between files and
program variables., READ transfers data from files. WRITE and PRINT
transfer data to files.

How a Data Transfer Statement Works

Data is not transferred directly between files and program variables.
In a READ, the current record is first transferred from the file to the
FORTRAN I/0 buffer FS$IOBF, which resides in main memory. The FORTRAN
I/0 system then scans FS$IOBF (using a pointer similar to a file
pointer), reads out the separate data items, edits them if the READ is
formatted, and assigns them to the appropriate variables. In a WRITE,
the order is reversed: the data items are edited or transferred into
FSIOBF, then the contents of FSIOBF are written as a whole to the file.

Usually FSIOBF is scanned sequentially, However, the T edit-control
descriptor can be used in a formatted data transfer to scan it in any
desired order. See Edit-Control Descriptors in Chapter 7.

For simplicity, the following descriptions will not mention FS$IOBF,
since you do not need to be concerned with it except when its size must
be increased (See INCREASING MAXIMJM RECORD LENGTH above) or the T
descriptor is used.

Data transfer statements may be used to conwvert data from one type to
another., See Internmal Files above,

Note

A function must not be referenced anywhere in a data transfer
statement if the function itself causes execution of a data
transfer statement.

6—25 Fourth Edition

FORTRAN 77 Reference Guide

READ Statement

A READ statement transfers data from an internal file, The READ
statement has the following formats:

Sequential: READ format [,input list]

READ ([UNIT=]Junit# [,[FMI=]format] [,END= label]
[/ERR= label] [,IOSTAT= ios]) [input list]

ANSTI direct: READ ([UNIT= Junit# [, [FMT=]format] ,REC= record#
[/END=label] [,ERR=label] [,IOSTAT=ios]) [input list]

IBM direct: READ (unit#'record# [, [FMT=]format] [,END= label]
[,ERR= label] [,IOSTAT= ios]) [input list]

NAMELIST READ ([UNIT=]unit#,blockname)

The unit# is an integer expression specifying the FORTRAN unit to be
read. Tt must be present. All other items are optional. An asterisk
may be given for unit#., This is equivalent to specifying FORTRAN wnit
1, the terminal.

If a format is present, the read is formatted, Otherwise it is
unformatted, A format may be any of the following:

e The statement number of a FORMAT statement (See Chapter 7 for a
discussion of the FORMAT statement.)

® An INTEGER variable that has been ASSIGNed such a number

A CHARACTER array name, array element, variable, or constant

A fixed-length CHARACTER expression
@ An asterisk, denoting list-directed 1/0

When a format consists of any character entity, the entity must contain
the same format list, including outer parentheses, that would appear
following the keyword FORMAT in an ordinary FORMAT statement. Only

ose positions that will actually be referenced during data transfer
need be defined. Any data at other positions will be ignored. If an
unsubscripted array is used, the format list will be obtained from the
concatenation of all its elements. Blanks are of no significance in
any type of format list. Widths greater than 255 for the transfer of
character data may be specified in this style of format.

For example:

READ (UNIT, '(A300)') CHAR_STR

Fourth Edition 6-26

.

INPUT/QUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

A record# is an integer expression, If a record# is present, the READ
statement is a direct—access READ; otherwise it is a sequential-access
READ, Any file may be read sequentially, but only a file created for
direct access (DAM file) can be read by direct access.

If END= label appears, oontrol will transfer to the statement label
specified by label (an integer constant) if endfile should occur during
the READ. Do not specify END= for a direct-access read.

If ERR= label appears, control will transfer to label if an error
should occur during the READ.

If IOSTAT= ios appears, ios (an integer variable) will be set to:
® A positive value if an error occurred
e Zero if the READ executed successfully
e A negative value if endfile was encountered and no error
occurred
Note

In an IBM direct READ, unit#'record# must be the first item in
the list.

If UNIT= is omitted from a sequential or B2NSI direct READ,
unit# must be the first item in the list,

If PMI= 1is omitted from any formatted READ, format must be the
second item in the list, and UNIT= must not appear.

In all other cases, the items may appear in any order.

Namelist for READ: Namelist is a method for performing self-labeling

input/output. Its distinguishing feature is that a data value never
appears alone, but is always labeled with the name of the variable that
has the value. On input, namelist allows runtime selection of the
variables to the values that will be assigned, and provides free—format
assignment similar to that of list-directed I/0. Refer to the end of
this section for a complete description of nmamelist. |

Input Lists: An input list is a 1list of variables, arrays, array
elements, and character strings. These data items provide the
destination of the data transferred in a READ statement., An input list
may be empty, in which case the record is read but skipped. Redundant
parentheses may not appear in an input list.

6—27 Fourth Edition

FORTRAN 77 Reference Guide

Input lists may contain implied DO loops, to simplify assignment of
data to arrays. An implied DO follows the same rules as an ordinary
DO. The DO loop control values may have been read in at an earlier
stage of the READ statement. Implied DO loops may be nested; for each
implied DO, a set of parentheses must exist surrounding it, the array
names it references, and any DO loops nested within it. An implied DO
must be preceded by a comma,

Array elements not specifically referenced in a READ remain unchanged.
If an array name appears without indexes, the computer will generate
implied DO loops to scan it in storage order. Assumed-size dummy
arrays may not appear in input lists.

Input list examples:

DIMENSION ARR(-1:10,-1:10), VEC(5)

READ(1,200) ARR

is equivalent to:

READ(1,300) ((ARR(I,J), I=-1,10), J=-1,10)

Fourth Edition 6-28

INPUT/QUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

WRITE Statement

A WRITE transfers data to a file. The WRITE statement has the
following formats:

Sequential: WRITE ([UNIT= Junit# [,[FMT=]Jformat] [,ERR= label]
[,IOSTAT= ios]) [output list]

ANSI direct: WRITE ([UNIT= Junit# [,[FMT=]format] ,REC= record#
[,ERR= label] [,IOSTAT= ios]) [output list]

IBM direct: WRITE (unit#'record# [,[FMI=]Jformat] [,ERR= label]
[,IOSTAT= ios]) [output list]

NAMEL IST : WRITE ([UNIT=] unit#,blockname)

WRITE statements differ from READ statements primarily in the direction
of data transfer. The unit#, format, record#, ERR=, and IOSTAT=
specifiers have the same significance as in a READ statement. END= is
not an option, and ios will never become negative, because endfile
cannot occur when a file is written.

The rules governing omission of UNIT= and FMI= are the same as for a
READ statement.

Namelist for WRITE: A namelist block may be output with a WRITE
statement but not with a PRINT statement. Refer to the end of this
section for a complete description of Namelist, i

Output lists: An output list has the same form as an input list., The
data items in an output list provide the source of the data transferred
in a WRITE statement. They must all be defined when the WRITE occurs.
An output list may be empty, in which case a null record is written.

Output lists may contain implied DO loops and array names without
indexes, which act as they do in input lists. They may also contain
expressions. Any CHARACTER expression in an output list must be
fixed-length. When the WRITE statement executes, each expression is
evaluated and the result written to the file., An expression might
consist only of a constant, in which case the constant is written. A
format descriptor for an expression must be appropriate to the data
type of its final value. (See Chapter 7 for a discussion of format
descriptors.) If an output 1list expression contains function
references, invocation of the functions must not change any other value
in the expression, either directly or indirectly.

Length Mismatch: When a fixed-length record is written, the output
list need not always have the same byte-length as the record. When an
attempt is made to write a record too short to hold all the output list

6-29 Fourth Edition

FORTREN 77 Reference Guide

items, an error will occur. When a record longer than necessary to
hold the output list is written, the extra positions will be padded
with blanks if the WRITE is formatted, or with binary zeroces if the
WRITE is unformatted., Padding of extra positions in unformatted DAM
file records is an F77 extension; FORTRAN 77 leaves such positions
undef ined.

Carriage Control: The first character of each record in a file to be
printed controls vertical spacing, and is not printed. The remaining
characters in a record are printed starting at the left-hand margin,
The significance of the permissible carriage-control characters is:

Character Vertical Spacing Before Printing
Blank Ore line

0 (zero) Two lines

1 To first line of next page

+ No advance (overprint of last line)

Records that contain no characters, generated by slash editing in a
FORMAT statement or by an empty output list, cause a blank line to be
printed. See Chapter 7 for a discussion on the FORMAT statement.

Unrepresentable Values: If a numeric item cannot be printed in the

form required by a format code, the output field will be filled with
asterisks.,

Fourth Edition 6-30

INPUT/QUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

PRINT Statement

PRINT format [,output list]

PRINT is a simplified WRITE. It prints the output list at the user
terminal acoording to the format given in format. A PRINT statement
will not output a namelist block. The format is as described for READ
and WRITE, It is equivalent to:

WRITE (1,format) [output-list]

For error handling a PRINT acts as a WRITE in which no options were
given,

6-31 Fourth Edition

FORTRAN 77 Reference Guide

LIST-DIRECTED I/0

Also known as free-format I/0, list-directed I/0 occurs when an
asterisk appears as the format in a READ, WRITE, or PRINT statement,

When list-directed output occurs, the values in the output 1list are
converted to printable form as directed by FORTRAN-supplied format list
defaults. The values are then written to the designated file.

List-directed input is uswlly employed when data is being read by a
program from a free-format device such as the user terminal. A data
item for 1list-directed input must have the same form as a constant of
its data type. ©FORTRAN 77 supplies default format descriptors
appropriate to the types of the data items in the input list, and uses
those descriptors to convert the data as it is read in, List-directed
I/0 cannot be used in accessing internal files or DAM files.

This feature also provides a method to indicate in the input data that
an item in the input list is to remain unchanged by a READ statement.
This is accomplished by using appropriate delimiters.

Delimiters

Adjacent values in a data line for list-directed input must be
separated by one or more blanks, a comma, or a slash. Consecutive
blanks are equivalent to single blanks. Blanks adjacent to a comma or
slash are of no significance. BAn end-of-record is treated as a blank.

Two adjacent commas with no intervening characters except blanks will
leave the corresponding item in the input list unchanged. A slash
terminates a read, leaving any remaining items in the input list
unchanged. A list-directed read continues until a slash is encountered
or all the items in the input list have been satisfied. If there are
not enough values to complete the read, an error will occur unless the
data is being read from the terminal, in which case the program will
wait for the remaining values to be typed in.

Repeat Counts

Repeat counts may modify data items under list-directed input. This
format:

r*C

represents r consecutive occurrences of the input value c¢c. If ¢ is
anitted, r null values are read in, leaving the next r elements of the
input list unchanged. No blanks may appear between r, *, and c.

Fourth Edition 6-32

INPUT/CQUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

Examples:

1. Source line: READ(1,*) A,B,C,D
Input data: 151, ,2%2E2
Result: A = 151,

B is unchanged
C=2,E2
D= 2.E2

2. Source line: READ(1,*) I,J,K
Input data: 5§ -3
Result: I=5

J=-3
K is unchanged

INPUT/CUTPUT ERRORS

If an error occurs during execution of a READ or WRITE (including FRINT
statement), execution of the statement terminates and the position of
the file pointer becomes indeterminate.

If an error or endfile condition occurs during a READ statement, the
data items in the input list and any implied DO index variables become
undef ined. Data items used solely in subscripts, substring
expressions, and implied DO control values do not become undefined.

If an error occurs during a WRITE statement, any implied DO index
variables become undefined. The oontents of the file remain as they
were before execution of the Write bedan.

If an error occurs during a Read or Write that contains no IOSTAT= or
FRR= option, or if endfile occurs during a READ that contains no
JOSTAT= or END= option, execution of the program terminates,

- NAMEL IST-DIRECTED I/0

Namelist Input

To read values into a namelist block, give the mame of the block in a
READ statement where a format would ordimarily appear.
For example:

READ (1,SHIP)

6-33 Fourth Edition

FORTRAN 77 Reference Guide

When control reaches a namellst 'READ statenent, _ the program reads"_’-’;
values from the designated FORTRAN unit. If values are to be read from
the terminal, the progralm waits for them to be typed in. :

Namelist Output

To output the values in a namelist block, ine. the name of the block in
a WRITE statement where the format would ordinarily appear. Namelist
is not designed to be used with a PRINT statement. .

For example:
WRITE (1,SHIP)

An output group will then be printed, giving the values of all the
variables in the namelist block. Each value will be labeled with the
appropriate variable name, Values of an array are printed
consecutively, separated by commas.

An output group has the format:

Snamelist_ block name
name = value, [value,]...

SEND
For example, the lines:

NAMELIST /SHIP/ I,K,SPEED
DIMENSION K(3)

DATA 1/32/, K/1,2 3/, SPEED/40 0/
- WRITE (1,SHIP)

viould produce the output:

SSHIP
=32,
Ri=115000a
SPEED = 4.000000E+01,
SEND

Fourth Edition 6-34

INPUT/QUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

When an uninitialized namelist variable is output, nmo error will occur,
but the value printed will be meaningless.

Input Groups

Values input under namelist must be presented in an input group. An
input group has the same syntax as an output group. However, not all
the variables in a namelist block need be referenced in an input group
for that block, and the references may appear in any order. When the
input group is complete, as indicated by a S$END, program execution
resumes.

A data value input under namelist has the same form as a constant of
its data type. When the type of a value does not match that of the
variable to which it is assigned, type oonversion occurs as in an
ordinary assignment statement.

For example, the lines:

NAMELIST /SHIP/ I,K,SPEED
DIMENSION K(3)
WRITE (1,%*) 'ENTER DATA:'
READ (1,SHIP)
WRITE (1,*) 'THE DATA IS:'
WRITE (1,SHIP)

could result in the following sequence:

ENTER DATA:
SSHIP

K(2) =1,
SPEED = 30,

kK1) =2,

SEND

THE DATA IS:

SSHIP

I = 0'

SPEED = 3,000000E+01,
SEND

Input Group Format: An input group may be given as shown above, given
in a single line, or subdivided into multiple lines as desired. A
token (keyword, name, number, or quoted string) must not be broken
across an end-of-line boundary. (A complex number may be broken at the
comma between its parts.)

6-35 Fourth Edition

FORTRAN 77 Reference Guide

Thus the input groups:
SSHIP K(2) = 1, SPEED = 30, K(1) = 2, SEND
and

SSHIP

K(2) =

1, SPEED = 30, K
(1) =2

r SEND

are both equivalent to the input group above, while the group below is
illegal.,

SSHIP

K(2) =1, SP
EED = 30,
K(l) = 2r
SEND

Inputting Arrays With Namelist

Several methods that make it easier to assign values to an array using
namelist are illustrated below with examples. The examples are outputs
of the following program:

PROGRAM NLIST
NAMEL IST /IOTA/ ARR
INTEGER ARR(10)

C

C INITIALIZE THE ARRAY

@

100 DO 200 I=1,10
ARR(I) = 0

200 CONTINUE

C

C READ A SET OF VALUES

c
WRITE (1,%*) 'ENTER DATA:"
READ (1,IOTA)

C

C WRITE THE VALUES

C

WRITE (1,%*) 'THE DATA IS:'
WRITE (1,IOTA)

Fourth Edition 6-36

INPUT/OUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

G~
P

e -,

eyl i
O |)y @{E}‘LJE”:. r

Fourth Edition

FORTRAN 77 Reference Guide

Scalar Promotion to an Array: When all the elements of an array are to
be assigned the same value, the value may be given as a scalar.

ENTER DATA:
SIOTA

ARR = 5,
THE DATA IS:
SIOTA

SEND

Scalar promotion to a contiguous subset of an array is also possible:

ENTER DATA:

SIOTA

ARR(2...6) = 5,

SEND

THE DATA IS:

STOTA

2RR = 0,5,5,5,5,5,0,0,0,0,
SEND

Errors When Using Namelist

If an error occurs during namelist I/O, and no ERR= has been supplied
in the READ or WRITE statement, the program will:

1. Print the offending line
2. Print a caret under the offending token
3. Print an error message

4, Exit to PRIMDS

Restriction on Namelist

Namelist cannot be used to access an array whose bounds are dynamically
declared. That is,

SUBRCUTINE BARE (A,N)
DIMENSION A (N)
MAMELIST /FOB/ A

will cause an error at compile time,

Fourth Edition 6-38

INPUT/OUTPUT STATEMENTS, DATA STORAGE, AND FILE TYPES

SUMMARY OF STATEMENT SYNTAX

In Table 6-4, all input/output statements are listed in alphabetical
order with their syntax requirements. The table is intended only as a
reminder for those already familiar with the statements.

6-39 Fourth Edition

FORTRAN 77 Reference Guide

Table 6—4
Input/Output Statement Syntax

Statement Syntax

BACKSPACE BACKSPACE ([UNIT= Junit# [, IOSTAT=i0s] [,ERR=1label])

CLOSE CLOSE ([UNIT= Junit# [,STATUS= stat] [,ERR= label]
[, IOSTAT= ios])

ENDFILE ENDFILE ([UNIT=]unit# [,IOSTAT= ios] [,ERR= label])

INQUIRE INQUIRE ([FILE=]filename or [UNIT= Junit# [,ERR= s]
[,EXIST= ex] [,OPENED= od] [,NUMBER= num]
[,MaMED= nmd] [,NAME= fn] [,ACESS= acc]
[,SEQUENTIAL= seq] [,DIRECT= dir] [,FORM= fm]
[,FORMATTED= fmt] [,UNFORMATTED= unf] [,RECL= rcl]
[,NEXTREC= nr] [,BLANK= blnk] [,IOSTAT= ios])

NAMELIST: Read ([Unit=]unit#,blockname)

NAMELIST: ~ WRITE ([UNTT=] unit#,blockname)

OPEN OPEN ([UNIT= Junit# [,FILE= filename] [,STATUS=stat]
[,ACCESS= acc] [,FORM= fm] [,RECL= reclength]
[,BLANK= blunk]n [,ERR= label] [,IOSTAT= ios]
[,ACTION= act]

PRINT PRINT format [,output list]

READ direct ANSI:

READ direct IBM:

READ Sequential:

REWIND

WRITE direct BNSI:

WRITE direct IBM:

WRITE Sequential:

READ ([UNIT= Junit# [,[FMT=]format],REC= record#
[,END=1abel] [,ERR=1abel] [,IOSTAT=ios]) [input list])

READ (unit#'record# [,[FMI= lformat] [,END= label]
[,ERR= label] [,IOSTAT= ios]) [input list])

READ format [,input list]

READ ([UNIT= Junit# [,[FMI=]format] [,END= label]
[,ERR= label] [,IOSTAT= ios]) [input list])

REWIND ([UNIT= Junit# [,IOSTAT= ios] [,ERR= label])

WRITE ([UNIT= junit# [,[FMT= lformat] ,REC= record#
[,ERR= label] [,IOSTAT= ios]) [output list])

WRITE (unit#'record# [,[FMI=]format] [,ERR= label]
[,TOSTAT= ios]) [output list])

WRITE ([UNIT= Junit# [,[FMI=]format] [,ERR= label]
[, IOSTAT= ios]) [output list])

Fourth Edition

6-40

Format Statements

The FORMAT statement is used to direct the input and output of data
being read or written in your program via READ, WRITE, or PRINT
statements. This chapter discusses using the FORMAT statement to
describe how data is to be organized coming from or going to a file.
Included in this discussion are:

® Format and I/0 list interaction

e Format list rescanning

® Field descriptors

® Edit-control descriptors

For information on Input/Output, see Chapter 6, I/0 STATEMENTS.

FORMAT STATEMENT

Formatted data transfer occurs when a format is given in a READ, WRITE
or PRINT data transfer statement. Most often, the format is the
statement number of a FORMAT statement. The other possibilities are
discussed under the READ Statement in Chapter 6.

In the following discussion, the term "I/O list" means either an input
list or an output list.

7-1 Fourth Edition

FORTRAN 77 Reference Guide

A FORMAT statement has the following format:

label FORMAT (d [,d]...)

where:
label is the mandatory statement label.
d is a field descriptor or an edit-control descriptor.

The parenthetical list of descriptors is known as a format list.
Blanks are of no significance in a format list. Parentheses may appear
inside a format list to delineate group repeat counts.

Field Descriptors control the data conversion process during data
transfer. For each item in the I/0 list, an appropriate field
descriptor must be given. Data moving to or from the data item is
converted as specified by the corresponding descriptor. A field
descriptor in a FORMAT statement cannot specify a width that is greater
than 255,

Edit-control Descriptors control more general aspects of the formatting
process, such as scale factors, tab control, and the optiomal printing
of literal character items to label the output.

Repeat Counts are integer constants prefixed to a field descriptor, or
to a parenthetical portion or the entirety of a format list.
Tndividual edit-control descriptors cannot have repeat counts. As data
transfer proceeds, the format list items modified by the repeat ocount
will be reused the number of times specified before format control
proceeds to subsequent format list items. Repeat counts have a maximum
nesting of 10 levels.

FORMAT AND I/0 LIST INTERACTTON

During data transfer, the format list is scanned from left to right,
except as modified by repeat counts. The 1/0 list is also scanned from
left to right.

When an edit-control descriptor is encountered in a format list, the
action or alteration required by it is performed. When a field
descriptor is encountered, the next I/O0 1list item is edited
appropriately and transmitted. If no I/0 list items remain when an
edit-control descriptor is encountered, data transfer terminates.

When the colon edit-control descriptor is encountered, data transfer
terminates if no I/0 list items remain to be transmitted; otherwise
data transfer continues.

An empty format list may be given to correspond to an empty I/0 list.

Fourth Edition 7-2

i

FORMAT STATEMENTS

FORMAT LIST RESCANNING

If the format list is exhausted before the I/0 list, the file pointer
is positioned at the beginning of the next record; format control then
reverts to the beginning of the portion of the format list that was
terminated by the last preceding right parenthesis. If there is no
such parenthesis, format control reverts to the beginning of the format
list, Any repeat count preceding the rescanned format is reused. On
output, the current record is padded with blanks and a new record
started. On input, the remainder of the current record is skipped, and
the file pointer advanced to the beginning of the next record.
Reversion of format control, of itself, has no effect on the scale
factor, the sign control (S, SP, SS), or the blank control (BN, BZ) in
effect at the time of reversion.

FIELD DESCRIPTORS

A field descriptor mediates the conversion of a data item between
internal and external form. Usually, the data is supplied by the I/0
list. In a character constant field descriptor, it is contained in the
descriptor itself.

Numeric Descriptors

The numeric descriptors are I, F, E, D, O, and G. |©Unless specified
otherwise or modified by edit-control descriptors, the following rules
apply to all numeric descriptors:

® Leading blanks are not significant for input. For output,
leading 0's are suppressed. A minus sign is printed for a
negative number, but a positive number is left unsigned.

e For ::anut with F, E, D, Q, and G descriptors, a decimal point in
the input field overrides the d specification in the descriptor.

® If the field width is insufficient to represent the number, then
the field width specified is filled with asterisks.

® Excess digits of precision may be specified on input to
non-INTEGER numeric data types. The excess will be ignored.

® See the BLANK= option of the OPFEN statement for the rules
concerning blanks in input fields.

The numeric descriptors are described in the following sections.

7-3 Fourth Edition

FORTRAN 77 Reference Guide

Integer Editing (I): Used to edit a short or long integer, The I
numeric descriptor has the following format:

Iw([.m]

where:

w is the size of the external field, including blanks and a
sign.

m is the minimum number of places to be displayed on output.
Leading 0's will be printed if necessary to fill the £field.
For input, m has no effect.

Real Editing (Nonexponential (F)): Writes a real number without an
exponent. Reads any real, double precision, or REAL*16 number. The F
edit descriptor has the following format:

Fw.d

where:

w is the size of the field, including blanks, the sign, and the
decimal point.

d is the number of places to the right of the decimal point.
The following rules apply to the F edit descriptor:

On input: The decimal point may be omitted from the f£field.
The rightmost d digits will be interpreted as

decimal digits. If a decimal point is present, its
position overrides d. Input fields appropriate for

E and D editing will also work for F editing.

On output: d decimal positions are always written.

Fourth Edition 7-4

FORMAT STATEMENTS

Real Editing (Exponential (E)): Edits a real or double precision
number with an exponent. The E descriptor has the following format:

Ew.d[Ee]

where:

w is the size of the extermal field, including an exponent and

its sign.

d is the number of decimal places. On input, an explicit

decimal point overrides d.

e is the number of exponent dlglts to be displayed on output.
Tt is ignored for input., When Ee is omitted from an E field
descriptor used for output, the defaults listed below under
output will apply.

The following rules apply to the E descriptor:

On input: The exponent may be omitted., E+00 will be assumed.

On output: If Ee is present, e digits of the exponent will be
printed. If Ee is omitted, the appearance of the
exponent will be as follows:

Value of Appearance of
Exponent Exponent
-99 < exp < 99 E 4 2%

-999 < exp<-99 -zzZ (no "E")
99%<exp < 999 +zzz (no "E")
=9999 < exp<-999 kekdk

999 < exp < 9999 *kkx

Note that the number is always normalized. For output that is
not normalized scalars should be used.

7-5 Fourth Edition

FORTRAN 77 Reference Guide

Double Precision Editing (D): Edits a double precision number. The D
descriptor has the following format:

Dw.d

The following rules apply to the D descriptor:

On input: Operates exactly like an E descriptor.

On output: Operates exactly like an E descriptor with no Ee
present, except that a D is substituted wherever an
E would appear in the output field. For explicit
control of double precision exponent format, output
the number with an Ew.dEe descriptor.,

REAL*16 Editing (Q): Used to edit a REAL*16 number. The Q descriptor
has the following format:

w.d

REAL*16 editing is the same as double precision editing except that a Q
is used in place of a D.

Complex Editing: A oomplex number consists of a pair of real or
double precision numbers. It is edited with an appropriate pair of
real or double precision field descriptors. The fact that the two
numbers form one entity mathematically is irrelevant to input/output.
Edit-control descriptors may appear between the two field descriptors.

General Editing (G): Edits real data where the magnitude of the data
is not known beforehand. The G descriptor has the following format:

Gw.d[Ee]

where:
w, d, and e are as defined for the F descriptor.
General editing produces the more readable F format when possible, but

converts to E format when the magnitude of the number exceeds F format
representational limits.

Fourth Edition 76

.......

FORMAT STATEMENTS

The following rules apply to the G descriptor:

On input:
On output:

The G descriptor is equivalent to the F descriptor.

The G descriptor acts as follows:

Magnitude (M) of Real: G Descriptor
Data Item Acts As

0.1 <=M<K1 F(w-n).d, n('b")

1<=M<10 F(w-n).(d-1), n('b")

10 <=M < 100 F(w-n).(d-2), n('b")

10**(d-2) <= M < 10**(d-1) F(w-n).1l, n('b")
10**(d-1) <= M < 10%**(d) F(w-n).0, n('b")
Otherwise Ew.d[Ee]

where b is a blank and n is 4 for Gw.d and e+2 for
Gw, dEe,

If M< .01 or M >= 10**d, then Gw.d is equivalent
to kPEw.d, where k is the current scale factor.

For input, the Gw.dEe field descriptor is treated
identically to the Gw.d descriptor. For output,
the Gw.dEe acts as Fw.dEe if 0.1 <= M < 10**3, and
acts as Ew.dEe otherwise.

7=7 Fourth Edition

FORTRAN 77 Reference Guide

Nonnumeric Descriptors

L, A, X, B, and format-list character oconstants are nonnumeric
descriptors, that is, they are not number oriented edit descriptors.

logical Editing (L): Edits logical data, transmitting a logical value
to or from an 1I/0 list entity. The L descriptor has the following
format:

Lw
where: =
w is the width of the field.
The following rules apply to the L descriptor:
On input: A valid input field consists of optional blanks,
optionally followed by a decimal point, followed by
aT or an F, The T or F may be followed by
additional characters in the field, but they will
be ignored. -
On output: The output field consists of w-1 blanks followed by
aTor F, as the value of the internal datum is
true or false, respectively.
Character Editing (A): Used for transferring character or Hollerith
values. The A descriptor has the following format:
Alw] N

where:

w is the width of the field, and must not be greater than 255
Characters when appearing in a FORMAT statement. It is
required when inputting or outputting Hollerith data, and
optiomal when inputting or outputting data from a variable of
type CHARACTER.

Fourth Edition : 7-8

FORMAT STATEMENTS

In the following general rules that apply to the A descriptor, L is the
length of the character item being edited.

On input: If w >= L, the rightmost L characters are taken
from the external input field. If w< L, thew
characters are left justified in the data item and
padded with blanks.

On output: If w > L, the characters are printed right
justified in the field, preceded by blanks as
needed. If w <= L, the leftmost w characters are
printed. If w is not specified it is assumed to be
equal to L.

Character Constant Editing: Used for transmitting character and
Hollerith constant data. The apostrophe edit descriptor and the
Hollerith edit descriptor have the following format:

Toed. ..¢' or nHcec...C

where:

Each ¢ is any character in Prime ECS (not necessarily a member
of the F77 character set).

n is the number of characters in the character constant.

Character strings in either of these formats may appear as constants in
an output format 1list. Such a string contains its own data,
eliminating the need for a corresponding item in the output data list.
When the string is encountered during the scan of the format list, the
characters it contains are written to the current record. A character
constant may not appear in a format list used for input, and may not be
modified by an individual repeat count.

Note

FORTRAN 66 permitted data to be read into an H format field,
altering the value it would print when the format list involved
was later used for output. FORTRAN 77 will not accept this
practice.

7-9 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

%ce Skipping (X): Used for skipping one or more character positions.
e X descriptor has the following format:

nX

where:

n is an integer. On output, equivalent to a character constant
of n blanks. On input, equivalent to the positional edit
descriptor, TRn, which is explained later in this chapter. No
repeat count may appear.

Business Editing (B) The B descriptor is used in printing business p—
reports where it is desirable to fill number fields to prevent ‘
unauthorized modlflcatlons, as on checks, suppress leading 0's and plus

mgns, prlnt trailing minus signs (accounting convention), and convert

minus signs to CR for indicating credit entries on bllls. Business

edltlng is an F77 extension.

B 'string'
where:

The length of string detemmines the field width. If the width
is too small for the number, then the output will be a string
of asterisks filling the field. Valid characters for the
string are:

=+.'.".$‘,*Z_#.CR_

- The use of the valid characters is explalned below.
o Plus (+)

. -'If only the flrst character is +, then the sian of the number (+
. or =)is prmted in the leftmost portion of the field (Fixed
sign). If the string begins with more than one + sign, then
~ these will be replaced by asterisks and the sign of the number
~ (+or -) will be printed in the field pOSl.thl’l immediately to
- the left of the first printing character of the number (Floating
i ’s1gn) If the rightmost character of the string is +, then the
 sign of the mnumber (+ or -) will be printed in that fz.eld

~ position follow:mg the ru;:mber (Trailing ::ugn) : ,

. _'Mmus (-) _ ST
The minus sign behaves the same as a plus sign except that a

space (blank) is printed 1nstead of a + i the number is
positive (Plus 81gn suppression) .. - i Al = .

Fourth Edition, Update 2 7-10

FORMAT STATEMENTS

Dollar sign ($):

A dollar sign $ may at most be preceded in the string by an
optional fixed sign. A single dollar sign will cause a $ to be
printed in the corresponding position in the output field (Fixed
dollar).

Multiple dollar signs will be replaced by printing characters in
the number, and a single $ will be printed in the position
immediately to the left of the leftmost printing character of
the number (Floating dollar).

Asterisk (*):

Asterisks may be preceded only by an optionmal fixed sign and/or
a fixed dollar. Asterisks in positions used by digits of the
number will be replaced by those digits. The remainder will be
printed as asterisks (Field filling).

Zed (Z):

If the digit corresponding to a Z in the output number is a
leading 0, a space (blank) will be printed in that position;
otherwise the digit in the number will be printed (Leading—0
suppression) .

Number sign (#):

#'s indicate digit positions not subject to leading-0
suppression; the digit in the number will be printed in its
corresponding portion whether 0 or not (zero nonsuppression).

Decimal point (.):

A decimal point indicates the position of the decimal point in
the output number. Only #'s and either trailing signs or credit
(CR) may follow the decimal point.

Comma (,):

Commas may be placed after any leading character, but before the
decimal points. If a significant character of the number (not a
sign or dollar) precedes the comma, a comma will be printed in
that position. If not preceded by a significant character, a
space will be printed in this position unless the comma is in an
asterisk field. In that case an * will be printed in that
position.

Credit (CR):
The characters CR may only be used as the last two (rightmost)
of the string. If the number is positive, two spaces will be

printed following it. If negative, the letters CR will be
printed,

7-11 Fourth Edition

FORTRAN 77 Reference Guide

See Table 7-1 for examples of B-Format usage.

Table 7-1

Examples of B-Format Usage
Number Format Output Field
123 B'####’ 0123
12345 B’ SR
0 B' ####! 0000
123 B'ZZZ%Z' 123
1234 B'Z27ZZ' 1234
0 B'ZZ27"
0 B'Z2Z74#' 0
1.035 B'#, ##' 1.04
0 B'#. ##' 0.00
1234 .56 B'Z22,7227,Z7#. ##' 1,234.56
123456 .78 B'Z72%,7277,77#. ##' 123 ,456.78
0 B'ZZ7,722Z,22#. ##' 0.00
2 B+ +002
=2 B!+ -002
2 B'-ZZ#' 2
=7 B'-ZZ#' = 9
234 B'ZZZZ7+"! 234+
=234 B'ZZZZ7+" 234-
234 B'Z27Z2Z-"' 234
~234 B'ZZ272Z2-" 234-
12345 B' 277, ZZ#CR' 12,345
-12345 B' 777, ZZH#CR' 12 ,345CR
123 B+, -, # ' 123.00
-123 B4, -, #4! -123.00
98 B! SZZZ272274#" S 98
98 B' $5S55S5H! $98
156789 BUGkEx [kxd deni il S*#*%%*]156,789.00

EDIT-CONTRCL DESCRIPTORS

Edit-control descriptors control general aspects of the formatting
process. They differ from field descriptors in that they do not
correspond to or supply individual data items, but modify the
enviromment in which the data transfer process occurs.

Fourth Edition 7-12

FORMAT STATEMENTS

Scale Factors (P)

The use of a scale factor allows you to move the location of the
decimal point in real numbers. The P descriptor has the following
format:

kp

where:

scale factor k is an wnsigned or necative integer constant.
The comma following a scale factor is often omitted, so that it
becomes a prefix of a subsequent field descriptor. The scale
factor has various effects, depending on the descriptor type
and the direction of data transfer.

The following rules apply to the P descriptor:

OnF, E, D, 9, and G input: If there is an exponent in the field, the
scale factor has no effect. Otherwise, it converts the data so that:

External Value = Intermal Value*(10**k)

On F output: The scale factor converts the value as for F input.

On E, D, and Q output: The mantissa is multiplied by 10**k and the
exponent is reduced by k to maintain the same overall value. This
permits output of E, D, and Q numbers in nomnormalized form.

G Output: If the G is acting as an F, the scale factor is ignored. If
it is acting as an E, the scale factor behaves as described for E
output.

Note

Once a scale factor has been used, it remains in effect for all
subsequent descriptors of appropriate type, until it is reset
to another value or to 0. When a format list is rescanned, the
scale factor is not reset to 0 automatically. If a scale
factor is to affect only one field, "OP" must appear before the
next scalable descriptor that occurs.

7-13 Fourth Edition

FORTRAN 77 Reference Guide

Sign Control Editing (SP,SS,S)

The SP, SS, and S descriptors control the placement of plus signs in
numeric output, Once a sign oontrol descriptor is encountered, it
remains in effect until it is explicitly altered or revoked, These
descriptors have the following format:

SP SS S

Each effect of each descriptor is explained below.

&

The processor will insert a plus sign wherever one may
optionally appear.

SS: The processor will not insert any plus sign whose
appearance is optional.

S: The processor will return to the locally defined system
default for sign editing.

Blank Control Editing (BN,BZ)

The BN and BZ edit descriptors can be used to specify the
interpretation of blanks, other than leading blanks, in numeric input
fields. The method of handling blanks in numeric input fields that is
established for a file by the BLANK= option of the OPEN statement may
be temporarily overridden by BN or BZ. The method may be altered as
often as desired, and will revert to the BLANK= value when the READ
statement is complete. Blank control descriptors have no effect on
output. The BN and BZ descriptors have the following format:

BN BZ
The effects of the blank control descriptors are explained below.

BN: All blanks will be deleted, and digits will be compressed
to the right side of the input field. An all-blank field
is interpreted as a 0 value.

BZ: All but leading blanks will be converted to zeros, as in
FORTRAN 66.

Fourth Edition 7-14

o

FORMAT STATEMENTS

Positional Editing (T)

The T edit-control descriptors are used to set tab positions in the
current file record. They have the following format:

Tn TLn TRn

where:
n is an integer constant less than or equal to 255.

The following description presupposes that you have read about the I/0
pbuffer FSIOBF at the beginning of the subsection on DATA TRANSFER
STATEMENTS in Chapter 6. The pointer that scans FSIOBF during data
transfer ordinarily behaves as follows:

1. Before data transfer, it points to the first position (byte) of
FSIOBF.

2. While an FSIOBF position is being read or written, it points to
that position.

3, After a position has been read or written, it moves to the next
position to the left and remains there,

4, After the last FS$IOBF position has been read or written, it
remains at that position.

Note that this behavior is the same as that of the carriage position on
an ordinary typewriter,

The T edit-control descriptor is used to alter the sequential progress
of the F$IOBF pointer. The pointer can be moved to the left or right
of its current position, or to an absolute position, in any desired
sequence. Subsequent data transfers will begin at the new position,
Thus FSIOBF positions, and hence the oorresponding current-record
positions, can be accessed as often as desired and in any order.

If an attempt is made to move the FS$SIOBF pointer beyond the first (or
last) FSIOBF position, the pointer will stop and remain at that
position, If T descriptors are used during a WRITE in such a way that
some FSIOBF positions remain undefined after all data items have been

transferred, the undefined positions will be filled with blanks before
FSIOBF is written to the current file record.

Moving the FSIOBF pointer has no effect on the file pointer, which

never skips positions within a record. Beware of confusing these two
pointers.

7-15 Fourth Edition

FORTRAN 77 Reference Guide

The effect of using the positional descriptors is explained below.

TLn: Move the FSIOBF pointer n positions left.
TRn: Move the FSIOBF pointer n positions right.

Tn: Move the FS$IOBF pointer to the nth character of the record.

Conditional Output

A colon (:) in the format list causes data transfer to end at that
point if no items remain in the output list. 'This feature increases
the versatility of a format list that oontains character constant
descriptors used in labeling the output. A colon is ignored on input.

Record Skipping

The slash (/) in a FORMAT statement indicates the end of data transfer
on the current record. Format of the slash edit descriptor:

/[/].'.

A slash in a format list causes I/0 processing to go to the next
record, As many new records will be bequn as there are slashes. The
effect of slashes at the beginning or end of a format list is
additiomal to the automatic beginning of a new record with each data
transfer statement.

The following general rules apply to the slash edit descriptor:

On input: Under sequential access, a slash causes the
remaining portion of the current record to be
skipped. The file pointer is positioned at the
beginning of the next record, making it the current
record. Under direct access, the remainder of the
record is skipped, the record number increased by
one, and the file pointer positioned at the
beginning of the record that has that record
number,

On output: Use of the slash is similar to input, except that
all positions skipped over will be filled with
blanks,

Commas adjacent to slashes may be omitted.

Fourth Edition 7-16

.

Subroutines and
Functions

This chapter discusses how to create and use your own functions and
subroutines, as well as those supplied by the F77 compiler. 1In
addition to one main program, a FORTRAN 77 program may contain any
number of functions and subroutines, collectively called subprograms.
There are five categories of subprograms in FORTRAN 77:

1. Intrinsic functions

2. Statement functions

3. External functions

4. Subroutines

5. Block data

F77 INTRINSIC FUNCTIONS

FORTRAN 77 supplies you with a library of a wide variety of intrinsic
(built-in) functions. You can use these functions for type conversion,
character data evaluation, lexical comparison, and the calculation of
various mathematical quantities,

8-1 Fourth Edition

FORTRAN 77 Reference Guide

The F77 intrinsic function set includes:
@ All FORTRAN 77 intrinsics
® Additiomal functions for bitwise logical operations
e Bitwise shifts
@ Truncation of an integer
® Determination of a data item's storage address

@ Operations on the REAL*16 and COMPLEX*16 data types

Intrinsic Function Tables

Tables 8-1 through 8-7 provide a complete list all F77 intrinsic
functions by category:

Table Intrinsic Function
8 -1 Logarithmic and Exponential
g -2 Trigonometric
8 -3 Hyperbolic
8 -4 Mathematical
8 -5 Conversion and Maximum/Minimum
8 -6 Character Manipulation
8 -7 Bit Manipulation

Where a specific F77 function has the same name as an existing FIN
function, the functions are the same, except as noted under
Reimplemented FTN Constructs in Appendix C.

Before using any function with which you are not ocompletely familiar,
be sure to study carefully the table entry and accompanying notes, if
any, for that function. Notes for Tables 1-7 immediately follow those
tables.

Since all F77 intrinsic functions are built into the language, you can
invoke an F77 intrinsic function at any point in any F77 program unit.
The F77 compiler and the BIND linking loader will automatically supply
the functions you invoke. No additional action is required.

Fourth Edition 8-2

SUBROUTINES AND FUNCTIONS

Referencing an Intrinsic Function

To invoke an intrinsic function, you use the function name followed by
the arquments on which you want it to act within an expression. After
the invoked function completes its calculations, the function name is
replaced by the value from the calculation.

For example, in the assignment statement
X = SORT(A + B)
SORT is the instrinsic function name. The purpose of this function is

to determine the square root of the value of the expression A + B,

For information on declaring certain intrinsic functions INTRINSIC in a
program unit, see Chapter 3.

Generic and Specific Functions

Many FORTRAN 77 intrinsic functions are generic. They exist in several
versions, called specific functions, which differ only in the data type
of the argument each accepts. Both generic and specific functions are
listed in Tables 8-1 through 8-7. When you reference a generic
function, the F77 compiler will examine the argument 1list at the
reference and select the specific function appropriate to the data type
of the arguments.

All arquments for either generic or specific functions must be of the
appropriate data type. If not, the compiler will signal an error.

Not all specific functions are individually named. Those that are may

be invoked directly by name, in which case you must be careful to
supply the correct data types.

Intrinsic Functions as Arquments

Only named specific functions can be passed as arquments to
subprograms. In some cases, a specific function has the same name as
its generic function. When this name appears in an arqument list, it
is the specific function that is passed.
The following intrinsic functions cannot be passed as arguments:

e Type conversion

® Selection of a maximm or minimum value

e Lexical comparison

8-3 Fourth Edition

FORTRAN 77 Reference Guide

® Logical operation

For more information on passing arguments with intrinsic functions, see
the Subprograms as Arquments section later in this chapter.

Long and Short Integer Argquments to Intrinsic Functions

All new programs you write in F77 should use long integers exclusively,
in conformance with the ANSI standard. The use of short integers in an
F77 program unit may become necessary when: ‘

e You convert program units from FORTRAN IV to F77, or,

® You write F77 program units which will return values to an
existing FORTRAN IV program unit.

No constraint on the use of short integers is imposed by the F77
intrinsic set. All F77 intrinsic functions have been extended to
accept either long or short arguments, or a mixture of the two, and to
produce short integer results where appropriate. BANSI FORTRAN 77 does
not provide schort integers or permit data types to be mixed in an
intrinsic function's argument list.

An intrinsic function that produces an integer result (an integer
intrinsic) will produce either a long or short integer. For integer
intrinsics other than INT whose argquments are integers, the result type
depends on the argument list at the particular invocation. For integer
intrinsics whose arguments are not integers, and for INT, the result
type depends on the compiler option (-INTS or —INTL) in effect when the
program unit containing the intrinsic was compiled. The notes for the
tables on intrinsic functions tell how the result type for each integer
intrinsic is determined.

Fourth Edition g8-4

SUBROUTINES AND FUNCTIONS

9Txxa1dwon 9TxXaTdwoD dXdad
xoTdwo) X TdwoD axa
9T« TESd 9Tx TESY dx#0
3Taqnoda aTqnod D{Ha _
Tesd Tesd dxd dxd T Byy? TeTiUsSUOdX
9T+ TE=T 9Tx TB=A 09010
=2Tqnodg aTqned 020 _ upTIebo]
8T Te=d T==d 0TO0™ 0TO01 T (e)otPOT UQUILOY)
9TxX2TdWOD 9Tx¥a1dWoD DOIM
xaTdwo) XaTdwoD 01D
9TxTEd 9Ty TES 2,040}
aTgnod 2Tqnod 501a _ PR TIEb0]
8T Te=d Tey o0V 901 T (e)BOT TenyeN
S930N uoTIoUNg JusunbIy aueN sueN — sjuaunbIy uoTIoung
Jo adAg, Jo =dAlL D13To=ds OTIBUSD JO ISqUINN UOT3TUT JaQ Jo sserd

TeT3suodxd pue OTWUITILHOT
T-8 9T9eL

1SUOT3IOUNg JTSUTIJUT

Fourth Edition

8-5

FORTRAN 77 Reference Guide

9T« TE 9TxTE=d ZNVIND
CYiealef aTqnog TNWLT —
7z'oz =g Teay FAV AR [AY AR 2 (ze/1e)ueoae
9T« TE=H 9T+ TBY NdINO
aTqnoQ aTgnoa NY.IWa =
vz' oz TEsy Tey MYV NYIY T (B)uezoae jusbueloIy
OTx TES 9T« TES £{09)(0)
aTanog aTqnog SCOvd _
€202 Tesyd T SOV SOV T (e)soooae SUTS00DIY
9T« TE4 9T« TESY NISYO
2Tanod aTqnod NISYa —
[AANI 4 Tesd Te9g NISV NISY T (e)utsoae UTSOIY
9T« TEY 9TxTE=A NLO
aTqnoa aTqnoa NI _
12’61 = Teg YL ML T (e)uey Juebure,
9TyxaTdwoD ITxxaTdWwo) SOXD
X2 Tdwod xaTdwo) SO
9T« TS 9T« 159 S0
STgqnod ITqned sada
T2'6T e Tesd SQD SO0 T (e)sco UTSOD
9TxTAWOD 9TxxaTdwoD NIS@D
xaTdwo) x21dwo) NISO
9TxTEeN" 9T« TE=" NISO
aTgnoq a1qnod NTISa —
TZ'61 Te=d Te=d NIS NIS T (e)uts SUTS
S930N uoTIOUNg Jusumb 1y SueN RN sjuaumbIy uoTIouNg
Jo =dAL Jo adAf, oT3T0ads JTISURD JO ISqUNN UoT3TUTI=d Jo sseTd

DTI}aWOUOHTIL, :SUOTIOUNJ OTISUTIFUI

-8 9T9EL

Fourth Edition

SUBROUTINES AND FUNCTIONS

9T+ TE 9TxTE=A HNVIO

aTgnog aTanod HNYIA _ Jusbuey,

61 T=od ey HNYL HNYL, i (e)yuey oTT0qI=dAH
9TxTEN 9TxTE=A HSDO

aTquod a1qnod HSCOA _ UTSOD

61 Tesd Ted HSCO HSCD T (e)usoo otroqaadig
9Ty TEST 9Tx B HNISO

aTanea aTqnod HNISA auts

61 Tesd Tesd HNIS HNIS 1 (B)yuts ot1ToqaedAH

S930N uoT3oung Jusunb Iy aureN auey sjusunbIy uoTIoUNg

Jo =dAL Jo adAr, ot3To=ds OTISUSD JO ISQUNN uoT3TUTId 10 SSBT)

orTogradAf :sSuoTIOUNI DTSUTIUT
£-8 9TqBL

Fourth Edition

8-7

FORTRAN 77 Reference Guide

((
9T+ T 9T« T2 INTO —
aTgnod aTqnog INIa ((2) 1INT) a78a
== TEesy LNV INTV T { (e) TINI) T uoT3eSuny,
Juaumb Iy
9TxX3TdWOD 9TxxeTduUo) DN _ xa1duo) Jo
9T xaTdwoD xa1dwo) DN 9N 1 (Te-'1°) a3ebnfucp
JUSUMb Iy
i i ¥s1dwo)
3Tqnog 9Tyx3TdWo) SVWIA _ 3o 31ed
9T JR:zE ¥a1dwop NIV - T TE Azeutbeur
T _ ; — Juaumb Iy
SIqnod 9T« XoTdwoD INEIA _ ¥xaTdwo) Jo
9T’eT =4 XaTduo) TN B T 1e 3IBd Teod
9T:xoTdW0D 9Tyx27dWOD HIDS®
xa1duoy xo7dwo) A0SO
OTxT5sd 9T« TeSd _ ¥0s0
aTqnog aTqnoa IH0Sa - 3004
LT Te=sd Tesd A0S IM0s T G*xx(E) axenbg
STqOa 9T¥XoTdwoD AV
__Tey xaqdwop S
9LxTE. 9L SEY0.
aTqueq aTqnod S
Teoy Tesd Sev _ anTeA
9T'0T 18bajur Iebajuy sav1 sav T G'ex (Zex®) 9INTOSAY
S930N uoT3IoOUNg Juaunb Iy aurey ueN sjuswunbIy uoTIOUNJ
Jo =adA&g, Jo adAg oT3T0ads OTIsUSD JO ISCuUIN UOT3TUT I3 Jo ssed
TEeOTIEUBUREN :SUOTIOUNI DTISUTIJUT

-8 STqeL

8-8

Fourth Edition

SUBROUTINES AND FUNCTIONS

Jonpoig
9T+ TESd aTqnod aosdo L UOTSTO21d
aTqnod Te=d aodda - ZexT® aTqnog
9T TS 9T+ T2 WIA0
aTqnod aTqnoa WIad —
==d = WIa e =>Te 3T _0__ S0URISTITA
c¢ 1abajur Iabajur WIAT WIa e < Te 3T ge-1e SAT3TSOd
9T« TE= 9T+ TE=d NOISO
aTqnoq STanod NOIST . .
ey ey NOIS 0> e It |IB|- ubtsS 3O
£E'ZT Tebajul BE TR NOISI NDIS 0 =< ze 3T |TE| Iajsuel]
9TxTESd 9T 1= aao
atgnod aTqnog acwa
ey Te=d aany DTIUNPTIY
€EiTT 19bajur asbajur aan a TT S30N 995 OTnpon
9TxT==d 9TxTESY ININOT
18bajur aTqnea LNTNQT 18ba3ur
ze'e 19bajul Teay ININ ININ 6 9I0M 395 591N
9T+ TE=d 9TxTE=Y ININO
aTanog 2Tdnoed INTNG TaCuUNY
8 Tesd 1=y ININY aTouM
INTNY 8 930N =98 Sa1eaN
S930N uoT3oung JuaumbIy aureN aueN sjusumbiy uoT3oUNg
Jo =dAL Jo AL ot3iToads OTI3URD JO IBCUINN UOT3TUT I Jo sserd
TEOTIRUBURR :SUOTIOUNg DTSUTIUL

(penuT3UOD) -8 STJEL

Fourth Edition

8-9

FORTRAN 77 Reference Guide

Y

.

a1qnoq 9TxXaTdwoD guict
2TAnod XaTdun) -
aTqnoa 9T« TESY Oar1aa
aTqnoa aTqnod - UoTSTOR1d
aTqnoa Tesd - aTqnog o3
vE'Y aT1gnod Iabajur = qI6a T OTINMYN
e 9TxXaTdWeD TR
Ty XoTdwo) -
Tesy 9T TEN -
=y aTqnoa TONS
Tesd Tesd e Tesd 03
ve'e e Iebajur INO1d THd T oTI=AUMN
pxI9ba3ur 9T¥X3aTdOD -
s 19D33UT xa1duo) L
¥ I9b23uT 9T 29 -
b 29633U] 9Tanod -
. s a8ba3ur ey - I9bajuT buoT
7E‘C px3Sba3UL Isbaqur - TINT T 03 OTIAMN
ZyI9boqur 9TxXaTdwoD -
Zedobaqur Xa1dwo) =
TxI2b23ur 9Ty TESY -
Zx19ba3ur a1gnoa -
Cxa3623UT Teod - aeboqur 3a0ys
VE'C Zx39D93UL Isbajur - SINT T 03 PTINMN
Fobajur 9TxxaTdwo) -
1sbajul xa1dwo) i
13b3a3uy 9TxTE=Y INIOI
bEGER aTanog INIQT
I19bajur T X141
1obaqur =g INT I2bajur 03 UOTSI3AUCD
ve‘ze'T asbajur 18bd3uI - INT 1 OTI3UMN =dAg,
S230N uoT3oung usunb Iy aurey suEN — sjusumbIy uoT3IoUNg
Jo =&AL Jo =dAg, oT3TOS OTIBUSD JO IaqUMN uoT3TUT JaQ Fo sseTD

UNUTUTAMUTX e pUe UOTSIDAUOD iSUOTIOUNI DISUTIJUT

S-8 STYBL

8-10

Fourth Edition

SUBROUTINES AND FUNCTIONS

13ba3uy Te=d TNTH -
pe'ee Tesy 19b23UT ONTWY
OTTE 9TxTE=d TNIWO
21qnoa aTqnod INTWI snTeA
Te9d ey TNIWY o IsoTTRUS
re‘ee aebajuy I19bojul ONIW NIW z =< (***'zge’TR)utu butsooy)
19633UT Tesy TXW -
velze Tesd 19bo3ulI OXIHY
9T+ TE=d 9T« TE=E TXYHO
=21qnod =2Tqnod TXYINI SNTeA
Tesd Te=da TN Jsabie]
pe’ g 19b23uT 18b23uUL 0XH XKW Z = (*--7e’TR)xeu Butsooyp
9TyxaTdwo) 9Tx¥3TdwoD -
9TxxaTdwoD xa1dwo) -
9Tx¥aTdwo) 9T« TS -
9Txx3TdWo) a1qnod -
9TxXSTdWOD Tesd = 9TxXaTdWoD
pE‘9 9Tx¥aTdwon I1sbajur - XIdWDd Z 10 T 03 oTI=umy
xa1dwo) 9TyXaTdwo) =
xa1dwo) xaTdwo) -
xo1duo) 9TxTE=d -
xa1dwoD aTanog -
xa1dwo) Tesd - xa1duon 03
¥E's x9Tduo) 1sbajur - XD 2107 DTINMN
9Tx TE5 9TxaTdwoD -
9T+ TESY X3TAWOD =
9Ty 1B 9Ty 1B -
9T+« TESY aTqned AIX=0
9T+ T==d T==d IXE0 9TxTE2d 03
7E'Y 9Ty TESd Isbajur - (4(00) T DTIUMN
S9J0N uoTjoung Juamb Iy aueN aureN sjusumb Iy uoT3oUNg
Jo =dAL Jo =dAL oT3TodS OTIBUS) JO ISUNN uoT3TUT 3= Jo sserd

UNUTUTRANWTXEY PUR UOTSIDAUOD SUOTIOUN 2 TSUTIFUT
(PeNUTIUCO) G-8 STqRL

.

Fourth Edition

8-11

FORTRAN 77 Reference Guide

>

pe’ Gz Te0TboT I9RIAD ITI @ > Te A TeOT*oT
—_—— —_— = v
ve‘se Teo1hoT1 1930RIBYD dT1 e => 1B ATeoTx9T
. <
pe’‘se Te01hbo] 1930RIEY) Lo1 78 < Te FSRR 3 <ol
— — =<
ye'se Te0ThOT I930RIEYD A1 78 =< Te A TeooT
Te buriis ur
ZEYT 1a2bagur I930rIAD KHEANT ze butiisans Butazsaqns
JO UOT3EDO] Jo xspur
A3T3ug Isjoviey)
ge'et 13bajur I930RIRD NE'T Jo y3bu] bus
I930vIRY) O3 13693UT
L I930RIRYD I1sbajur YD 1sbajur 3IDAUCD
19ba3ul 03 IaoeIv)
ZE' L 1abajur I930vIEY) MYHDI 19joeIRy) 3I2AUCD
S230N uoT3IouNg Juaumb Iy aureN uoTIoUNg
Jo A7, Jo =dAL oTITo=dS OTISUDH UoT3ITUT I Jo ssed

uoTyeTndTUey Ia30RIRy)
9-8 9T]EL

ISUOTIOUN OTSUTIUI

8-12

Fourth Edition

SUBROUTINES AND FUNCTIONS

L94¢E-0 Woig

Jacumy
wopuEy
GE J1abajur I19bajuy ANIT - T 93BI3UID
0°T °3 0 woxq

IDqUNYN WOPUE] TaquMy

ge' vE e Tesd e - T Chl-BE =" WopURY
wa3T ejed

TE 230N JO SS9IpPY SS91pPPY

vE'1E Fx29b03Ul 295 9,041 - T obe103g TENIOW sbeio3g
b
7€’ 0E I9ba3ur I=ba3jur Ps - z a1eoun Iy
33o1

#c0¢ I19b32uT 19b23Ux I1 - @ 23EOUNI] uo TN I,
vE’ 6T asbajur 19623UT LIHS = € 10 ¢ 3ITYS
ve‘8e T9ba3uT 19ba3uT I - z JUBTY 33TUS

e’z 1abajur Isbajur ST = 4 3397 3FTYS S33TYS
ve’ LT Isbajur 1sb3jur LON = T ION SsTMITd
7€' 92 Iabaju] asbajul F:(0).4 - Auy d0X =TT
ve'oz 19bajur 1abazur ¥0 = Auyg d0 sTMITH

suotyeaadp

f€’9c Isbajur 13bajul ANy - Auy ANV SSTM3TH Teo1boT

S930N uoTIoUNg JuaumbIy auneN sueN SjusumbIy uoT3oung

Jo =dAg Jo =dAL o1iToads oTasuRD JO ISCqUIN UOT3TUT JaQ Jo sserd

uoTieTndTuel 3Td
L-8 3TqeL

tSUOTIOUNg OTSUTIJUL

Fourth Edition, Update 2

8-13

FORTRAN 77 REFERENCE GUIDE

Notes for Tables 8-1 through 8-7

In the following notes the names of data types are given in lowercase.
Uppercase is reserved for intrinsic function names.

1

The generic INT discards the fractional part of its argument,
producing a truncated (unrounded) integral value. The result
will be INTEGER*2 in a program unit compiled with -INTS, and
INTEGER*4 in a program unit compiled with —-INTL (the default).

INTS and INTL are similar to INT, differing only in that the
result type is detemmined by the functlon selected rather than
the compiler option in effect.

For a of type real, REAL(a) is a. For a of type integer or
double precision, REAL(a) is as much precision of a as a real
datum can contain. For a of type COMPLEX, REAL(a) iIs the real
part of a.

For a of type double prec;151on, DBLE(a) is a. For a of type
integer or real, DBLE(a) is the value of a in double premslon
form. For a of type COMPLEX, DBLE(a) is the real part of a in
double precision form.

For a of type REAL*16, QUAD(a) is a. For a of type integer,
real, or double precision, QUAD(a) is the value of a in
REAL*16 form. For a of type COMPLEX, QUAD(a) is the real " part
of a in REAL*16 form.

CMPLX may have one or two arguments. If there is one
argument, it may be of type integer, real, double precision,
or COMPLEX. If there are two arguments, they must both be of
the same type and may be of type integer, real, or double pre-
cision,

For a of type COMPLEX, (MPLX(a) is a. For a of type integer,
real, or double precision, CMPLX(a) is the COMPLEX value whose
real part is REAL(a) and whose imaginary part is zero.

CMPLX(al,a2) is the COMPLEX value whose real part is REAL(al)
and whose imaginary part is REAL (a2).

DCMPLX is similar to CMPLX, except that a COMPLEX*16 number is

Pproduced.

Every ASCII-7 character is represented in the computer as a
sequence of eight bits ranging from 10000000 to 11111111
(octal :200 to :377, Decimal 128 to 255). The Prime Extended
Character Set (Prime ECS) is represented as a sequence of
eight bits ranging from 00000000 to 11111111 (octal :000 to
:0377, Decimal 0 to 255). The ASCII-7 characters are a proper
subset of Prime ECS. Any such sequence can be interpreted
either as a character or as an integer. CHAR and ICHAR
provide a means for converting between the two

Fourth Edition, Update 2 8-14

SUBROUTINES AND FUNCTIONS

interpretations. On a Prime computer, a value that is out of
the range of the character set is autamatically mapped into
the range of the character set as noted under the following
discussion of CHAR. (For Prime ECS characters to be accepted
by the compiler, use the -ECS compiler option. Refer to
Chapter 9.)

ICHAR operates on a single character. For an ASCII-7
character, it returns an integer between 128 and 255; for a
Prime ECS character, it returns an integer between 0 and 255.
These represent the decimal equivalent of the bit pattern
(ASCII-7 or Prime ECS) for that character.

CHAR operates on any integer, and under one of two possible
conditions:

1. when the -ECS compiler option is invoked:

If the integer is between 0 and 255, then all
but the eight rightmost bits are truncated.
The integer is used directly.

2. When the -ECS compiler option is not invoked:

If the integer is between 128 and 255, then all
but the eight rightmost bits are truncated. The
integer is used directly.

If the integer is not between 128 and 255, it is
converted as follows:

e Truncate all but the eight rightmost bits (the
lowest-order byte).

@ Set the leftmost remaining bit to 1.

If conversion is required, CHAR returns the character whose
bit pattern oorresponds to the binary equivalent of its
argument.

The effect of the conversion is that for every integer T
CHAR(I) = CHAR(MOD(I,128) + 128)

The compiler option —-ECS is discussed in Chapter 9. This
option deals with the ICHAR and with the CHAR functions. The
complete Prime Extended Character Set is described in Appendix
A.

8-15 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

10

11

12

13

14

ANINT(a) is defined as:

REAL (INTL (a+.5)) if a >= 0

REAL (INIL (a-.5)) if a < 0
DNINT(a) is defined as:

DBLE (INTL (at+.5)) if a >= 0

DBLE (INTL(a-.5)) if a < 0
QNINT(a) is defined as:

REAL*16 (INTL (a+.5)) if a >=0

REAL*16 (INTL(a-.5)) if a <=0

NINT(a) and IDNINT(a) are defined as:

>=0
<0

INT (at+.5) if
INT(a-.5) if

|

The argument to IABS may be INTEGER*2 or INTHGER*4. The
result will be of the same type as the argument.

MOD yields the remainder when its first arqument is divided by
its second argument. Both arguments must be of the same type.
The result will also be of that type.

The four specific functions under MOD are defined:

MOD(al,a2) = al - (INTL(al/a2) * a2)

AMOD(al,a2) = REAL(al - (INTL(al/a2) * a2))
IMOD(al,a2) = DBLE(al - (INTL(al/a2) * a2))
OMOD(al,a2) = REAL*16(al - (INTL(al/a2) * a2))

The result for MOD, AMOD, IMOD, and QMOD is a "Division by
Zero" error when the value of the second argument is zero.

SIGN combines the magnitude of its first argument with the
sign of the second. If the value of the first argument is
zero, the result is =zero, which is neither positive nor
negative. '

The value of the argument of the LEN function need not be
defined at the time the function reference is executed.

INDEX(al,a2) returns an integer value indicating the starting
position “within the character string al of a substring
identical to string a2. If a2 occurs more than once in al,

Fourth Edition, Update 2 8-16

e

15

16

17

18

19

20

21

22

23

SUBROUTINES AND FUNCTIONS

the starting position of the first occurence is returned.

If a2 does not occur in al, the value zero is returned. Note
that zero is returned if LEN(al) < LEN(a2).

The REAL, function for real part extraction is the same
specific function that is selected when the generic function
REAL is given a COMPLEX*8 argument.

The DREAL function for real part extraction is the same
specific function that is selected when the generic function

DBLE is given a COMPLEX*16 argqument.

REAL and DREAL for real part extraction could not be passed as
arquments in FORTRAN 77 because they are specific type
conversion functions. To provide symmetry with AIMAG and
DIMAG imaginary part extraction, which can be passed, F77
allows REAL and DREAL to be passed as arguments.

A complex value is expressed as an ordered pair of reals,
(ar,ai), where ar is the real part and ai is the imaginary
part.

The value of the argument of SQRT, DSQRT, and QSQRT must be
greater than or equal to zero. The result of CSQRT and CDSQRT
is the principal value with the real part greater than or
equal to zero. When the real part of the result is zero, the
imaginary part is greater than or equal to zero.

The value of the argument of ALOG, ILOG, QLOG, ALOG10, DLOG10,
and QLOG10 must be greater than zero. The value of the
arqument of CLOG, DLOG, and OQLOG must not be (0.,0.). The
result of CLOG, DLOG, and QLOG is the principal value, i.e.
the range of the imaginary part of the result is
-pi < imaginary part <= pi. The imaginary part of the result
is pi only when the real part of the argqument is less than
zero and the imaginary part of the argument is zero.

All angles are expressed in radians.

The result will be expressed in radians.

The absolute value of the argument of SIN, DSIN, QSIN, Q@0S,
DCOS, QC0S, TAN, DTAN, QTAN is not restricted to a value less
than 2*pi.

The absolute value of the argument of ASIN, DASIN, and QASIN
must be less than or equal to one. The range of the result is
-pi/2 <= result <= pi/2.

The absolute value of the argqument of ACOS, DACOS, and QACOS

must be less than or equal to one. The range of the result
is: 0 <= result <= pi.

8-17 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

24

25

26

The range of the result for ATAN, DATAN, and QATAN is
-pi/2 <= result <= pi/2. If the value of the first argument
of ATAN2, DATAN2, or QATAN2 is positive, the result is
positive. If the value of the first argument is zero, the
result is zero if the second argument is positive and pi if
the second argument is negative, If the value of the first
argument is negative, the result is negative. If the value of
the second argqument is zero, the absolute value of the result
is pi/2. The arguments must not both have the value zero.
The range of the result for ATAN2, DATAN2, and QATAN2 is:
—pi < result <= pi.

All comparisons are based on one of the following collating
sequences:

® ASCIT-7 (American National Standard Code for
Information Exchange ANSI X3.4-1977).

® Prime ECS, as described in Appendix A of this manual.

If both of the characters being compared are ASCII-7
characters, the ASCII-7 «collating sequence is used;
otherwise, the Prime ECS collating sequence is used.

IGE(al a2) returns the value .TRUE. if al=a2, or if al follows
a2 “In the appropriate collating sequence. Otherwise,
DGE(al a2) returns the value .FALSE.

IGT(al,a2) returns the value .TRUE. if al follows a2 in the
appropriate collating sequence. Otherwise, IGT(al,a2) returns
the value .FALSE.

LLE(al,a2) returns the value .TRUE. if al = a2, or if al
precéaés a2 in the appropriate collating sequence. Otherwise,
LLE(al,a2) returns the value .FALSE.

LLT(al,a2) returns the value .TRUE. if al precedes a2 in the
appropriate collating sequence. Otherwise, LLT(al,a2) returns
the value .FALSE.

If the operands for LGE, IGT, LLE, and LLT are of unequal
length, the shorter operand is oonsidered as if it were
extended on the right with blanks to the length of the longer
operand.

The result-type for IGE, IGT, LLE, and LLT will be LOGICAL*4
in a program unit compiled with -LOGL, and LOGICAL*2 in a

program unit compiled with -LOGS.

AND, OR, and XOR perform the bitwise logical function named on

a list of long and short integers. The result will be a long
integer if any argumﬁnt is long; otherwise it will be a short
integer.

Fourth Edition, Update 2 8-18

2

28

29

30

31

SUBROUTINES AND FUNCTIONS

When short and long integers are mixed, the short integers
will be sign—extended, ggg_zero—extended.

Performs a bitwise logical NOT function (ones complement) on a
long or short integer. The result has the type of the
argument.

LS and RS take two arguments; each arqument may be either a
long or a short integer. These arguments are called ARGl and
ARG2 in the following.

LS shifts ARGl to the left by the number of bits specified in
ARG2. The result has the type of ARGL — that is, no
type—change occurs. Vacated places are filled with zeros. T
ARG2 is not positive, no shift occurs.

RS is identical to LS, except that the shift is to the right.

SHFT is similar to LS and RS, except that it can shift in
either direction, and can perform two shifts rather than one.
The additional shift occurs if a third integer argument, ARG3,
is given.

If ARG2 is negative, the shift is to the Ileft. 168 She Gl
positive, the shift is to the right. If it is zero, no shift
occurs.

If ARG3 appears, the shift specified by it will be carried out
after the shift specified by BARG2 is complete. The rules are
the same as for the ARG2 shift.

LT takes two argquments. Each argument may be either a long or
a short integer. These arguments are called ARGl and ARG2 in
the following.

LT preserves the left ARG2 bits of ARGl, and sets the rest to
zero (left truncation). The result has the type of ARGl that
is, no type change occurs. If ARG2 is <= 0, no bits are
preserved.

RT is identical to LT, except that the right ARG2 bits are
preserved. '

LOC operates on an item of any data type except CHARACTER and
LOGICAL*1. The result is an INTEGER*4 value representing the
gmmorydaddress where the first byte of the data item is

ocated. |

The LOC function returns two halfwords (four bytes) containing

the address of its argument. The format for the returned
address is as follows:

8-19 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

32

33

34

35

36

1 settoseno

 '2-3 _Rlng number _
o4 Data format code. Set to zero, mdlcatlng

only two words 1n thls data form.at
5-16 _ Segnent number of argument '
17-32 Halfword Aimber o larctinent

An integer result produced by this function will be INTEGER*2
in a progran unit ocompiled with -INTS, and INTBGER*4 in a
program unit compiled with =INTL.

When this function operates on integers, the arguments may be
a mixture of INTHGER*2 and INTEGER*4. The result will have
the type of the longest argument.

A special case arises when IABS, MOD for integers, ISIGN, or
IDIM is passed as an actual arqument to a subprogram. In this
case, the invoking program unit has no opportunity to examine
the argument 1list on which the function will operate.
Therefore it cannot select the version of the function that
will implement the above rule. For oompatibility with the
FORTRAN 77 standard, the following rule is used instead.

When IABS, MOD for integers, ISIGN, or IDIM is passed as an
actual argument to a subprogram, the function passed will
accept and produce INTEGER*4 values if the invoking program
unit was compiled with -INTL, and INTHGER*2 values if it was
compiled with -INTS. This is the only case in which integer
types cannot be mixed in the argument 1list of an integer
intrinsic function.

This function cannot be passed as an argument to a subprogran.

The argmnent for H\TD and IRND is 1nterpreted as follows.
Arg)O, Arg is used to 1n1t1allze the random number

generator. Arg is returned as the value of the
call

Arg=0, The function returns a random number from 0 to 1.0
for RND, 0 to 32767 for IRND i

Arg<0, Initializes the random number generator and then
returns a random number as in the Arg=0 case.

The QOS function will raise a SIZE error whengve\; it
calculates C0S(x) for a REAL number x that does not fit into a

32-bit long integer.

Fourth Edition, Update 2 8-20

SUBROUTINES AND FUNCTIONS

STATEMENT FUNCTIONS

Statement functions are supplied by the user. Statement functions are
useful or convenient when a mparticular function would otherwise be
repeated at several different points in your program.

A statement function is a single statement procedure that vyou specify
in much the same way as an assignment statement., After you define the
statement function, the operation you specify executes whenever the
name of the function appears in an expression within the same program
mit. The value of the expression is assigned to the function name you
specify in the statement function.

The definition of a statement function has the following format:
name ([argument [,arqument]...]) = expression

where:

name is the symbolic name of the statement function. The data
type of the statement function can be any of the data types.
The same data type will be returned by the function.

arqument is a dummy argument name that holds the value of an
actual argument during execution of the statement function.
You can have a list of dummy arquments specifying the order,
number, and type of actual arguments substituted when the
function is referenced. If the dumy argument name is
duplicated in another statement function, the two names have no
connection since the name is defined only within that function.
You must uses parentheses even if you don't specify a dummy
argument.

expression is any arithmetic, logical, or character expression,
except one whose name duplicates that of a dummy argument and
does not appear in the actual arqument list at the function
reference,

A statement function reference has the following format:

name ([argument [,arqument] ...])

where:
name is the function name

arqument is an actual arqument that corresponds to the dummy
argument in the statement function definition.

8-21 Fourth Edition

FORTRAN 77 Reference Guide

The following examples illustrate valid statement function definitions
and references.

Definitions References

TOTAL (X,Y,Z2) = X+Y+2Z SUM = NET-TOTAL (TAX,Q0ST, SALES)
AVG(A,B,) = A*B/2.0 PRINT*, AVG(DEPOS,DEDUCT)

FUNC (A) = A**B+10 Y = FUNC(SALARY)

At compilation time, F77 encounters the function reference and uses the
reference's actual arguments with the dummy argument of the
corresponding statement function. In the illustration above, you can
see that the reference in the first example associates the actual
arqument TAX with dummy argument X, (OST with ¥, and SALES with Z. The
actual argquments agree in order, number, and type with the
corresponding dummy arguments,

EXTERNAL FUNCTIONS

External functions are supplied by you or from Prime's libraries. (See
the Subroutines Reference Guide for more information.) An external
function, also called a function subprogram, is another type of
subprogram that looks very much like a subroutine or an intrinsic
function. Unlike an intrinsic function or a subroutine, however, a
function subprogram is an external program unit that is oompiled
separately from its calling program.

To define a function subprogram, you use the FUNCTION statement:

[type] FUNCTION name ([argument [,argument]...])

where:

type is any F77 data type
name is the symbolic name of the function in which the FUNCTION
statement appears. name is an external function name and must

have the same data type as the function name in the calling
program,

arqument is a dummy argument.

Fourth Edition 8-22

o

SUBRCUTINES AND FUNCTIONS

To execute a function subprogram, you reference the function in an
expression. The function reference has the following format:

name ([arqument [,arqument] ...])

where:
name is the name of the function.

argument is an actual argument or argument list of data items
whose values are transferred to the function subprogram from
the calling program and are treated the same as in subroutine
calls.

You call a function subprogram by using its name and actual arguments
in an expression. For example, the assignment statement:

VALUE = (QOST(X)

contains a function reference to a function subprogram called COST. X
is an actual argument that will be associated with a dummy arqument in
the FUNCTION statement. The reference QOST(X) passes the value in X to
the function subprogram. After statements in the subprogram are
executed, control returns to the main program. A single value for X is
now available to the expression in the main program.

Caution

When a function reference appears in an expression, evaluation
of the function must not alter the value of any other part of
the expression, either directly or by altering arguments to
other functions.

SUBROUTINES

A subroutine subprogram, also called a subroutine, is a separate
program unit that accomplishes some particular computing task. It is
placed immediately after the main program., A subroutine operates on
the arquments it is passed and acts as a statement, Fiqure 8-1 shows
the relationship of a subroutine to a main program.

8-23 Fourth Edition

FORTRAN 77 Reference Guide

Main Program CALL statement
STOP
END
Subroutine SUBROUTINE statement
RETURN
END
Additional .
Subroutines .

Relationship of Subroutines to Main Program
Fiqure 8-1

You invoke a subroutine from the main program by using a CALL
statement:

CALL name [([arqument [,arqument]...])]

where:
name is the symbolic name of the subroutine

arquments are a list of actual arguments, separated by commas,
agreeing in number, order, and type with the dummy argument
list in the subroutine's header statement., If the argument
list is empty, you can omit the parentheses. Constants and
expressions are permissible as arquments.

When program control reaches a call to a subroutine, control passes to
the subroutine. A subroutine starts with a SUBROUUTINE statement; its
statements execute; and a RETURN statement is issued to return control
to the main program. (Alternate returns are discussed later in this
chapter,) Data is returned via the values of arquments and of data in
OMMON. Data must not be returned to an actual argqument that was an
expression., If this were to happen no error message would be printed
but invalid results might occur.

Fourth Edition 8-24

Pl N

SUBROUTINES AND FUNCT'IONS

Caution

In FORTRAN 77, argquments are passed by reference (address).
Therefore it is extremely important not to alter the value of a
dunmy argument whose actual arqument is a constant or a
parameter (a constant item). Such an alteration will alter the
value kept in storage for the constant item, just as it would
for a variable. If the compiler has utilized the same storage
copy of the constant item in coding other references to the
item, the altered value will be used when the code is executed.

Using the SUBROUTINE Statement

A subroutine always starts with a subroutine statement that has the
form:

SUBROUTINE name [(argument [,arqument]...])

where:

name is any legal F77 name having fewer than or exactly 32
characters.

arquments are a list of dummy arguments corresponding to actual
arquments passed by the calling program unit. A dummy argument
may be:

e A variable name or an array name that is typed and
dimensioned.

® A durmy subprogram name, You must declare the
corresponding actual argument INTRINSIC or EXTERNAL in
the main program.

® An asterisk corresponding to an alternate return
specifier.

8-25 Fourth Edition

FORTRAN 77 Reference Guide

In the following example there is a CALL statement from the main
program to a subroutine, SUBl, to perform calculations on an argument
having a value of 5:

I=5

PRINT 10,1 /* Value printed is 5

CALL SUB1(I)

PRINT 10,I /* value printed is 25.
10 FORMAT (I2)

STOP

END

SUBROUTINE SUB1 (J)
J = J**2

RETURN

END

As you can see, SUBL performs calculations on the value of the argument
(I) passed to the dumy argument (J), then transfers control back to
the main program.

Subroutine Libraries

Prime supplies several libraries of subroutines. These allow PRIMS
subroutines to be called by an F77 program, and also provide access to
various commonly used utilities., To load a subroutine library, use the
BIND subcommand, LIBRARY:

LIBRARY library name

This command must be given at load time before the ungualified LI
command is given. However, many PRIMOS subroutines and functions are
loaded simply with the unqualified LI.

For more information, see the Subroutines Reference Guide.

Note

Many PRIMDS subroutines require and return short integer
arquments, When long integers are used to supply data to such
a subroutine, oconvert them directly in the arqument 1list with
the INTS intrinsic function., Arquments to which data is
returned must themselves be short integers, since data cannot
be returned to an expression.

Fourth Edition 8-26

SUBROUTINES AND FUNCTIONS

Recursion

In FORTRAN 77, recursion is not permitted. F77 has been extended to
permit recursion in subroutines, though not in functions, The rules
and syntax are identical in recursive and non-recursive subroutine
calls,

Number of Arguments

The following is a description of the upper limit to the number of
arquments that F77 allows:

® 254 arquments can be passed to and from subroutines
e 247 entries may be present in a Namelist block
There are exceptions to these limits:

1. If all the arguments to a subroutine are of type CHARACTER, F77
only allows 127 argquments.,

2. If the arquments are of mixed data types (CHARACTER and other
types), the maximum number of arguments is between 127 and 254,
and depends upon the positions occupied by the CHARACTER data
in the arqument list,

Similiar restrictions exist for namelist blocks, For information on
using namelist blocks, see Chapter 6.

BLOCK DATA SUBPROGRAM

A block data subprogram is a program unit that has a BLOCK DATA
statement as its first statement., A block data subprogram is
nonexecutable, The BLOCK DATA statement is discussed in Chapter 3.

8-27 Fourth Edition

FORTRAN 77 Reference Guide

SEQONDARY ENTRY FOINTS

The ENTRY statement allows you to call a function subprogram or
subroutine subprogram in a place other than where a FUNCTION or
SUBROUTINE statement begins, 'The ENTRY statement has the following
format:

ENTRY name [([argument [,arqument]...])]

where:

name is the symbolic name of an entry in a function or
subroutine subprogram and is called an entry name. If ENTRY
appears in a function subprogram, name is a function name,

arqument is a dummy argument ocorresponding to an actual
arqument in a CALL statement or a function reference. argqument
can be a variable name, array name or dummy procedure name or
an asterisk. An asterisk is permitted only in an ENTRY
statement in a subroutine subprogram.

A secondary entry is referenced (in a function) or CALLed (in a
subroutine) exactly as the main entry point would be, and supplied
arquments corresponding to its particular argument list,. Program
execution begins at the entry and proceeds until a RETURN or END
statement is encountered. ENTRY statements are non-executable and
therefore ignored if encountered.

Figqure 8-2 illustrates the use of an ENTRY statement in a subroutine
subprogram,

Calling Program Subroutine

CALL SUB2(A,B,C)— | SUBROUTINE SUB2(D1,D2,D3)

.

ENTRY SECOND(E,F)

« | REWRN _ .7
SOEND ¢ T

Flow of Control of a Secondary
Entry Point in a Subroutine.

Figure 8-2

Fourth Edition 8-28

ol

SUBROUTINES AND FUNCTIONS

An entry name to a function may be typed by default or in a type
statement. The type may differ from that of the function name and of
other entry names, except that all entry names in a CHARACTER function
must be of type CHARACTER and have the same *(length) specification,
All entry names in a function are autamatically equivalenced. Before
the function returns, assignment to an entry name of the same type as
the entry name used in referencing the function must occur.

Alternate returns are permitted following the CALL of a subroutine at

an entry point. Only the statement labels in the entry point's
argument list are counted. Alternate returns are discussed below.

Note

In some versions of FORTRAN IV, the association of actual and
dummy arguments established when a subprogram is invoked at any
entry point persists following return to the invoking program
unit., Consequently, a subprogram can be invoked repeatedly at
various entry points, and reference made after each invocation
to any dumy argqument that became associated with an actual
arqument at any previous invocation. This technique is not
accepted by any Prime FORTRAN,

ALTERNATE RETURNS

As the above illustration shows, usually a subroutine returns control
to the statement following the point of call, It can alse return
control to any labeled executable statement that you specify in the
calling program unit through the use of a RETURN statement, The RETURN
statement has the following format:

RETURN [n]

where:

n is an integer expression indicating the alternate point in
the main program that is to receive control from the subroutine
subprogram. If n is not specified, a normal return to the
statement following the CALL statement is executed.

8-29 Fourth Edition

FORTRAN 77 Reference Guide

The subroutine can select the statement to which it will return.
Alternate returns are accomplished as follows:

1.

The label of every statement to which the subroutine might
return must appear in the arqument list of the CALL statement,
prefixed by an asterisk (or a dollar sign — F77 extension).

An asterisk appears in the dummy arcument list of the
subroutine at each position corresponding to a statement label
in the CALL statement.

RETURN statements in the subroutine may optionally be followed
by an integer expression n. When control encounters a RETURN n
in the subroutine, the subroutine will return to the statement
of the calling program unit whose label corresponds to the nth
asterisk in the dummy argument 1list of the subroutine. If
control first encounters a RETURN without a number, or with a
number outside the applicable range, a return to the point of
call will occur.

For example:

100
300
500
700
900

PROGRAM ALTRTRN

CALL PROCL (J)

CALL PROC2 (K)

CALL PROC3 (J, K, *100, 4, *900)
GO TO 100

STOP

END

SUBROUTINE PROC3 (J,K,*,M,*)

IF (I .EQ. J) RETURN

IF ((I + J) .EQ. K) RETURN 1 /* Returns to stmt 100
IF ((I + K) .EQ. J) RETURN M/2 /* Returns to stmt 900
RETURN /* Returns to stmt 700
END

Alternate returns are permitted following the CALL of a subroutine at a
secondary entry point. Only the asterisks in the dummy argqument list
at the point of entry are counted.

Fourth Edition 8-30

P

pr—

SUBROUTINES AND FUNCTIONS

SUBPROGRAM ARGUMENTS

Adjustable Subprogram Elements

The length of the value returned by a type CHARACTER function, the
lengths of type CHARACTER dummy arquments in a subprogram, and the
dimension bounds of an array dumy argument, can be made adjustable.
An adjustable element will take on the length or bounds of the
corresponding actual argument at each call, Such flexibility can
considerably increase the versatility of a subprogram.

Adjustable Character Functions

To make a CHARACTER function adjust the length of its result, specify
its length as an asterisk in parentheses:

CHARACTER* (*) FUNCTION CFUNC (A,B)

In each program unit referencing the adjustable function, use a
type—-statement to assign the CHARACTER type and a length to the name of
the function. The length of the value returned at each function
reference will be the one assigned to the function in the calling
program unit.

Adjustable Character Arquments

To make a type CHARACTER durmy argument adjustable, specify its length
to be (*) in a type-statement:

SUBROUTINE YORD (CVAR)
CHARACTER* (*) CVAR

CVAR will take on the length of the actual argqument corresponding to it
at each call,

8-31 Fourth Edition

FORTRAN 77 Reference Guide

Assumed-size Arrays

To create an assumed-size array, replace the upper bound of the last
dimension specification in a fixed or adjustable dumy array
declaration with an asterisk. That dimension will take on the upper
bound associated with it in the oorresponding actual array in the
calling program unit.

Adjustable Array Dimensions

To create an adjustable array, pass the name of an existing array to an
appropriately typed dummy arcument in a subprogram. Dimension the
dummy array using:

1. Integer variables passed to integer dummy argquments in the
subprogram,

2. Integer variables from COMMDN.

Expressions are permitted in adjustable array bound declarations,
subject to the following restrictions:

e All variables must be INTEGER
@ No array references
e No function references
Example:
REAL FUNCTION ARRTEST (ANAME, DIML, DIM2)
IMPLICIT INTEGER (A-Z)

COMMDN /BND/ DIM3,N
DIMENSION ANAME (DIMl, DIM2:N, 1:10, DIM3+12)

When control passes to a subprogram containing an adjustable array, the
array bounds are determined before execution begins, The variables
used may therefore be redefined or become undefined during execution
without affecting the dimensional properties of the array.

Caution

Adjustable arrays do not represent dimension-by-dimension
subsets of the original array, but are equivalenced to the
original array as a whole. The adjustable array cannot be
longer than the corresponding actual array.

Fourth Edition 8-32

SUBROUTINES AND FUNCTIONS

Boundary Spanning Arrays as Arguments

The F77 compiler can produce two types of object code. Ordinmary code
can address only within a segment. Boundary-spanning code is capable
of addressing across the boundary between one segment and the next.

Whenever an array extends across a segment boundary, all references to
it must oonsist of boundary-spanning code. Those portions of it in
segments higher than the one in which it begins are inaccessible to
ordinary code.

Arrays in local static or dynamic storage present no problem. There
may be at most one segment for all static variables, and another for
all dynamic variables: hence no boundary-spanning is possible. Arrays
in COMMDON blocks under 128K bytes (one segment) long present no problem
because such blocks are always loaded within a single segment.

An array in a COMMDON block over one segment long (a large COMMON block)
may or may not span a segment boundary, depending on its size and its
location in the block. In practice, no array under one segment long
should ever be placed in a large COMMON block. See the Note below.

When a program unit is compiled, the F77 compiler inspects any COMMON
statements in it for COMMON block size and the presence of arrays. All
references in the program unit to any array the compiler knows to be in
a large @MMON block will automatically be compiled with
boundary-spanning code. No special action is required of the
programmer in this case.

However, when a dummy array occurs in a subprogram, the compiler is not
aware of the storage status of any actual array that will become
associated with it when the subprogram is called. Therefore, the
compiler does not know whether to compile references to the dummy array
with ordinary or boundary-spanning code. The programmer must specify
to the compiler the correct action — in this case the use of the
-BIG/-NO_BIG compiler option.

When a subprogram is compiled with -NO_BIG (the default), dummy array
references within it will be compiled with ordinary code. The actual
array passed to any dummy array in it must then be contained within one
segment. When a subprogram is compiled with -BIG, all references it
makes to any dumy array will be compiled with boundary-spanning code.,
The actual array passed to any dummy argument in it may then span a
segment boundary, though it need not do so.

8-33 Fourth Edition

FORTRAN 77 Reference Guide

A dummy-array reference ocompiled with boundary-spanning code will
execute correctly for any actual array, whether it spans a segment
boundary or not., However, boundary-spanning code executes more slowly
than ordinary code because it performs more complex address
calculation. The -BIG option should therefore not be used
unnecessarily.

Note

An array less than 128K bytes long should not be put in a large
OMMON block, since this will cause the inefficiency of
boundary-spanning code to be needlessly incurred in every
reference to the array.

Character Arrays as Arquments

When a CHARACTER array that may cross a segment boundary is passed as
an arqument, the element size of the actual array and the dummy array
‘must be the same. This is an F77 restriction required to insure that
no element of the array can fall across a segment boundary. See the
QOMMON Statement in Chapter 3 for more information on COMMON block
restrictions.

Subprograms as Arquments

Entire subprograms may be passed as arguments to other subprograms,
where they may be referenced or passed again. The general method is as
follows:

1. 1In the invoking program unit, name any intrinsic functions to
be passed in an INTRINSIC statement, and any user supplied or
library subprograms to be passed in an EXTERNAL statement.

2. In the actual arqument list for each invocation, the
subprograms which are to be passed to the invoked subprogram
are named,

3. Place the following dummy names at the entry point to the
called subprogram (either in its header or an ENTRY statement):

¢ An untyped dummy subroutine name at each position
corresponding to an actual argument that is a
subroutine.

® An appropriately typed dummy function name at each

position corresponding to an actual argqument that is a
function.

Fourth Edition 8-34

SUBROUTINES AND FUNCIIONS

4, 1In the invoked subprogram, use the appropriate dummy subprogram
name wherever a reference to the corresponding actual
subprogram is desired.

For example, suppose that the program called MAIN calls the subroutine
SUB repeatedly, and each time passes one of the intrinsic functions
DSIN and DOOS, as well as one of the user-supplied subroutines GREATER
and LESSER, The code could be as follows:

PROGRAM MAIN

INTRINSIC DSIN, DS
EXTERNAL. GREATER, LESSER
CALL SUB (DSIN, GREATER, 1.DO)
CALL SUB (DS, GREATER, 1.D0)
CALL SUB (DS, LESSER, 1.D0)
STOP

END

SUBROUTINE SUB (TRIG, COMPARE, NUM)

DOUBLE PRECISION TRIG, NUM

IF (TRIG(NUM) .GT. DTAN (NUM)) CALL COMPARE (NUM)
RETURN

END

Not all intrinsic functions can be passed as argquments. See the
section F77 INTRINSIC FUNCTIONS discussed previously in this chapter
before passing intrinsic functions.

8-35 Fourth Edition

PART III

Working With Prime F77

Compiling
Your Program

Prime's F77 compiler translates the statements in your source program
into an object (binary) module and produces an optional listing file.
This binary module contains the machine code that is needed to link and
execute your program. The optional listing file contains a compiler
output listing that gives error and statistical information, and other
helpful messages and information about your source program.
This chapter describes:

® How to compile FORTRAN programs

® How to specify options to the compiler

e Compiler error messages

e Compiler options

For information on using BIND to link your program, see Chapter 10.

QOMPILING AN F77 PROGRAM

After you have entered your source program into the system using ED or
EMACS, and have named your program with a .F77 suffix, you are ready to
invoke the F77 compiler.

9-1 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Invoking and Specifying Options to the Compiler

To invoke the FORTRAN 77 compiler from the PRIMOS command level, use
the F77 command:

F77 pathname [-option 1] [-option2] ... [-option n]

pathname is the pathname of the source program you want to compile.

options are the names of the compiler options that you invoke on the
command line. These options provide information and input while you
compile, link, and execute your program. Every option must begin with
a hyphen (-).

For example:

OK, F77 TEST -BIG

[F77 Rev. 19.4]

0000 ERRORS [<.MAIN.> F77 Rev. 19.4]
OK,

You can specify more than one option on the command line, in any
order. However, if you issue conflicting or redundant options, an
error message will result.

Compiler Error Messages

During compilation, the compiler will output an error message each
time it encounters an error in your program. The error messages,
which are self-explanatory, will assist you in finding and
correcting the errors in your program. For every error found, the
compiler displays information about where the error occurred and
the level of severity:

ERROR xxx SEVERITY y BEGINNING ON LINE zzz
Explanation of message

XXX Error cocde
y Level of severity
ZZZ Line number where error begins

explanation Description of the error, and possible remedies.

Errors are classified into four levels depending on the severity of
the error. Table 9-1 describes each level of error.

Fourth Edition, Update 2 8-2

- COMPILING YOUR PROGRAM

Table 9-1
Error Message Severity Levels

Level 1
ERROR TYPE: Warning — a recoverable error, object file produced.
Example:

OK, F77 TEST
[F77 Rev. 19.4]

WARNING 250 SEVERITY 1 BEGINNING ON LINE 1
A program unit consisting of just an END statement has been
encountered.

0001 ERRORS [<> F77 Rev. 19.4]
MAX SEVERITY IS 1
OK,

Level 2

ERROR TYPE: Recoverable — the compiler will attempt corrective
action.

pro—

Example:

OK, F77 RAISE
[F77 Rev. 19.4]

ERROR 274 SEVERITY 2 BEGINNING ON LINE 30
Missing END statement is supplied by the compiler.

0001 ERRORS [<RAISE> F77 Rev. 19.4]
MAX SEVERITY IS 2
OK,

Level 3
ERRCR TYPE: Nonrecoverable — object file not produced.
Example:

OK, F77 PUZZILE
[F77 Rev. 19.4]

ERROR 369 SEVERITY 3 BEGINNING ON LINE 6
Invalid argument to the "ICHAR" intrinsic function.

o 0001 ERRORS [<.MAIN.> F77 Rev. 19.4]
MAX SEVERITY IS 3
ER!

9-3 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Table 9-1 (continued)
Error Message Severity Levels

Level 4
ERROR TYPE: Abort the compilation.
Example:

OK, F77 POGO

[F77 Rev. 19.4]

Not found. Cannot open file "TEST.FILE" (OPEN)
SCURCE LINE NUMBER 2

0001 ERRORS [<> F77 Rev. 19.4]

MAX SEVERITY IS 4

ER!

End-of-Compilation Message

After the compilation process is complete, the compiler prints an
end-of-compilation message at the terminal. Its format is:

0000 ERRORS [<.MAIN.> F77 Rev. 19.4]

After compilation, control returns to the PRIMDS level.

COMPILER OPTIONS

This section discusses the options available with the F77 compiler.
Most of the options come in pairs, which act as switches to enable
or disable a particular action. The Prime-supplied defaults are
indicated by an asterisk. These defaults can be changed by your
System Administrator.

Table 9-2 lists a summary of compiler options and abbreviations.

p 321
The -321 option generates 32I-mode code, which is a segmented

virtual mode that takes maximum advantage of Prime's 32-bit machine
architecture (P450 and up).

Fourth Edition, Update 2 9-4

COMPILING YOUR PROGRAM

p 321X

The -32IX option is a new addressing capability added to 32I-mode
code that can speed up the access of arrays larger than one
segment, It also permits use of common blocks larger than one
segnent. This option gives the effect of using general registers
as base registers.

Note

A program compiled with the —-32IX option can be run only on
a 2550, 9650, 9750, 9950, or 9955 Prime system.

P *64v

The -64V option generates 64V-mode code, which is a segmented virtual
addressing mode for 32-bit machines.

P *-ALLON_PRECONNECTION / —NO_ALLOW_PRECONNECTION
Abbreviation: -APRE / -NAPRE

The —ALLOW_PRECONNECTION option allows for the preconnection of a
listing output to a preopened file unit 2, or of a binary output to a
preopened file unit 3. When files have been preconnected, the compiler
displays a message indicating that preconnection has occurred.

For example:

OK, BINARY SNOW

OK, LISTING FLAKE

OK, F77 CIRCLE -LISTING

[F77 Rev. 19.4]

Note: Bimary output will go to pre—opened unit 3 (preconnection). (F77)
Explicit use of -Allow_PREconnection is recommended when using preconrection.
Use —Allow_PREconnection on the command line to suppress this note.
Use —-No Allow PREconnection to avoid accidental preconnection.

Note: Listing output will go to pre-opened unit 2 (preconnection). (F77)
Explicit use of -Allow_PREconnection is recommended when using preconrection.
Use -Allow PREconnection on the command line to suppress this note.
Use —-No_Allow_PREconnection to avoid accidental preconnection.

0000 ERRCRS [<.MAIN.> F77 Rev. 19.4]

0000 ERRORS [<SIRKLE> F77 Rev. 19.4]

OK,

When the -NO_ALLON PRECONNECTION option is used, no attempt to
perform preconnection is made. The compiler automatically selects
file units for listing and binary files, opens, and closes them.

9-5 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

P -BIG / *-NO _BIG

Abbreviation: -BIG / -NBIG

The -BIG option handles arrays spanning segment boundaries. A
dunmy array can become associated with any array, even if it
crosses a segment boundary.

The -NO_BIG option specifies that a dumy array can become
associated only with an array that does not cross a segment
boundary.

See Arrays as Argquments in Chapter 8 for details.

P * -BINARY [pathname] / -NO_BINARY
Abbreviation: -B / -MB
The -BINARY option produces an object (binary) file with the name

source-program.BIN. To write the object code to a different file,
use the —BINARY option followed by pathname.

—-NO_BINARY specifies that no binary object file is to be produced.
Use this option when only a syntax check or listing is desired.

P> -CLUSTER
Abbreviation: -CLU

—CLUSTER specifies that all routines in a source file be compiled
as a cluster and optimized together. A cluster is a collection of
program units in one source file that have been compiled together
in order to maximize the optimizations that can be performed. Use
of this option means that the compiler can make certain assumptions
that are relevant to optimization. The compiler will check the
validity of these assumptions when possible, but the responsibility
for their validity rests with the user.

The assumptions the compiler will make are the following:

1. The file compiled with the —CLUSTER option is assumed to be
a program with a single entrypoint. If the file has a main
program in it, then that is the entrypoint. Otherwise, if
the user has used the -MAIN option to specify a main entry
procedure, then that routine is the program entrypoint.
Otherwise, the first routine is taken to be the program
entrypoint.

2. The compiler will not make any ©procedure or data
entrypoints of the cluster visible outside the cluster

Fourth Edition, Update 2 9-6

COMPILING YOUR PROGRAM

except the main procedure entrypoint. All other procedures
may be QUICK—called or expanded inline. You must also
specify —OPT 4 when using —CLUSTER for this purpose. The
binaries from such a compilation cannot be combined with
other modules that expect to call these procedures.

P -DCLVAR / *-NO_DCLVAR

Abbreviation: -DC / -NDC

The -DCLVAR option controls flagging of undeclared variables. A
warning will be generated for any variable that is used in the program,
but not included in a type statement.

For example:

OK, F77 FRIDAY -DCLVAR
[F77 Rev. 19.4]

ERROR 413 SEVERITY 2 BEGINNING ON LINE 4
"TOTAL" has been defined by the context in which it was used. Declare
all variables, function references, and subroutine references.

ERROR 413 SEVERITY 2 BEGINNING ON LINE 4
"J" has been defined by the context in which it was used. Declare
all variables, function references, and subroutine references.

0002 ERRORS [<.MAIN> F77 REV. 19.4]

MAX SEVERITY IS 2
CK,

-NO_DCIVAR specifies that no undeclared variable warnings be generated.

P -DEBUG / *-NO_DEBUG
Abbreviation: -DBG / -NIBG

The -DEBUG option generates full debugger (DBG) functionality code.
With -DEBUG, the object file is modified so that it will run under the
source level debugger. Execution time increases, and the <c©ode
generated will not be optimized.

-NO_DEBUG causes no debugger code to be generated.

In Chapter 11 of this book you will find an introduction to the Source
Level Debugger. For complete information on this separately priced
product, see the Source Level Debugger User's Guide.

9-7 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

p -DO1 / *-NO DOl
Abbreviation: -DO / -NDO

DOl specifies that all DO loops will be of the FORTRAN IV type. This
option is provided for upward compatibility of FTN programs.

The use of the NO DOl option specifies that FORTRAN 77 DO loops will be
produced. These are described in Chapter 5. They differ significantly
from those in FIN.

The F77 compiler acts as a standard-conforming compiler only when it is
invoked with —-NO DOl.

P> -D_STATEMENT / *-NO_D_STATEMENT
Abbreviation: -D_STMT / *-ND_STMT

The -D_STATEMENT option causes the F77 compiler to interpret all
statements that begin with a D in column 1 as normal source coding.
The "D Statements" are used primarily for debugging purposes and are
valueable when used with applications that require continual
maintenance.

If the —-NO_D_STATEMENT is specified, or if the -D_STATEMENT option is
not specified, the statements with a D in column 1 are treated as
comments. Thus, with the minimum amount of effort, the user may switch
into the debugging mode or the run mode, and out again by merely using
or not using the -D_STATEMENT option. Reliance upon the DEBUGGER may
be samewhat diminished.

The program fragment below illustrates the use of the -D_STATEMENT

option. (The complete program is Sample Program #1 in Appendix B of
this manual.)

ThEAAFAAEXAETRIA IR AT KA A A kkdkhdhrhrhkhhkrkhdkhhhhdhdhhhhAhkhhhdhhhhkhhd

* UPDATE 1 -D_STATEMENTS *
i ONLY WHEN THE -D_STATEMENT OPTION IS *
* IS USED IN THE COMPILATION, WILL THE *
* VALUE FOR SPORTY PRINT *

SPORTY = 2

o

D PRINT*, SPORTY

Fourth Edition, Update 2 9-8

PN

.

COMPILING YOUR PROGRAM

p -DYNM
Abbreviation: -DY

-DYNM allocates local storage dynamically. The opposite option is
-SAVE. Dynamic storage variables are kept in each program's stack. At
each call to a subprogram, space for its dynamic variables is
allocated. At RETURN, the space is freed, and the data lost. -DYNM
allocates dynamic storage to all variables not SAVEd or in COMMDN, and
is used principally to save space in user memory.

The F77 compiler acts as a standard-conforming compiler only when it is
invoked with -DYNM.

P> -ERRLIST / *-NO_ERRLIST
Abbreviation: -ERRL / -NERRL

The -ERRLIST option controls the generation of an errors-only listing.
A listing file named source-program.LIST will be generated. This file
contains only the error messages for the current compilation. -ERRLIST
has no effect when a full source listing is specified or implied.

The —NO_ERRLIST option causes an errors-only listing file to be
generated. Does not override the -LISTING option.

P> *-ERRTTY / -NO_ERRTTY
Abbreviation: -ERRT / —-NERRT

The -ERRTTY option controls printing of error messages at the terminal.
Error messages will be printed at the temminal during compilation.

The -NO_ERRTTY option causes no error messages to be printed. They
will still be included in the source listing file, if any.

P> -EXPLIST / *-NO_EXPLIST (Implies -LISTING)
Abbreviation: -EXP / -NEXP

The -EXPLIST option inserts a pseudo—assembly code 1listing into the
source listing. Each statement in the source will be followed by the
pseudo-PMA (Prime Macro Assembler) statements into which it was
compiled. For information on PMA, see the Assembly Language
Programmer's Guide.

The -NO_EXPLIST option causes no assembler statements to be printed in
the listing.

-9 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Figure 9-1 contains a sample listing created with —-EXP.

OK, F77 FRIDAY -EXPLIST
[F77 Rev, 19.4]

0000 ERRORS [<.MAIN.> F77 Rev. 19.4]

OK, SLIST FRIDAY,LIST

SOURCE FILE: MONTH>DAY>FRIDAY.F77

COMPTLED ON: 850211 AT: 21:11 BY: F77 REV, 19.4

Options selected: FRIDAY -EXPLIST

Optimization note: Currently "-OPTimize" means "-OFTimize 2",
"-Full OPTimize" means "-OFTimize 4", and default is "-QPTimize 2".

Options used(* follows those that are not default):
64V Allow_PREconnection No BIG Binary No DClvar No_DeBuG No DOl DYnm
No_ERRList ERRTty EXPlist* No FRN No FIN Entry INTL Listing* LOGL MAp
OFFset* OPTimize(2) No OverFlow No_PBECB No_PRODuction No RAnge
SIlent{-1) TIME No STATistics No Store Owner_Field UPcase XRef*

1l ¢
2 INTEGER*2 ARRAY (5), TOTAL
3 DATA ARRAY/10,200,40,55,78/
4 TOTAL=0
000033: 140040 CRA
000034: 04.0000538 STA SB%+53
5 Do 100 J=1,5

000035: 005414.000000 IO PB%+0
000037: 011415,000054S STL. SB%+54

6 TOTAL=TOTAL+ARRAY (J)

000041 : 005415.000054S IIf. SB%+54
000043: 011415.0000568S STL. SB%+56

000045: 02.00005358 LDA SB%+53
000046 : 15.000057S LDX SB%+57
000047 : 06.000423L ADD LB%+423,X
000050: 04.0000535 STA SB%+53
OK,

Pseudoassembly Code Listing
Generated with —-EXPLIST Option

Figqure 9-1

Fourth Edition, Update 2 9-10

COMPILING YOUR PROGRAM

> —EXTENDED CHARACTER SET / *-NO_EXTENDED CHARACTER SET
Abbreviation: -ECS / -NECS

Prior to Revision 21.0 of F77, the high-order bit of an ASCII-7
character representation was always set. Thus a 40 (octal) and 240
(octal) passed to the intrinsic function CHAR both returned the SPACE
character. At Revision 21.0, F77 supports Prime Extended Character Set
(Prime ECS), so each of these arguments can produce a unique character;
40 (octal) returns NBSP (NO-BREAK SPACE), and 240 (octal) returns SP
(SPACE). The full Extended Character Set is printed in Appendix A.

To take advantage of this new capability, the —EXTENDED_CHARACTERTSET
(-ECS) compiler option must be used. This option causes all unique
arguments submitted to the CHAR intrinsic function to return unique
characters.

~NO_EXTENDED CHARACTER_SET causes the CHAR function to map the argument
into the range of values 128 through 255. Thus CHAR X will give the
expected character when X is in the range of 128 through 255
(pre-Revision 21.0 characters). Should X be in the range of 000 to 128
(new characters in Prime ECS), then CHAR will map the value of X into
the range of values, 128 through 255. For instance, if X = 34, CHAR(X)
should return the Cent Sign but instead it will return # or the same as
if X = 163.

B> -FRN / *-NO_FRN
Abbreviation: -FRN / —-NFRN

The Floating Point Round option improves the accuracy of calculations
involving single-precision real numbers. Such numbers are REAL or
REAL*4 in F77.

When the -FRN option has been given, all single-precision numbers are
rounded each time they are moved from a register to main storage. The
method of rounding is: if the last bit of the mantissa is 1, adda 1
to the second-to-last bit, then set the last bit to 0. This rounding
reduces loss of accuracy in the low-order bits when many calculations
are performed on the same number.

The -FRN option does not affect double-precision real numbers
(REAL*8, DOUBLE PRECISION) or quadruple floating point precision
numbers (REAL*16). It causes a slight increase in execution time, and
should therefore be wused only when maximum accuracy is a major
consideration.

—NO_FRN will cause no rounding to be performed.

9-11 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

P -FIN_ENTRY / *-NO_FTN_ENTRY

Abbreviation: -FINE / —-NFINE

The use of the -FIN_ENTRY option considers that all calls where
procedure names are being passed as actual arguments are calls to FIN
procedures.

—-NO_FIN_ENTRY considers all calls where procedure names are being
passed as actual arguments are calls to a non FIN procedure.

> -FULL HELP
Abbreviation: -FH
The -FULL _HELP option is similar to the —-HELP option, except that in

addition to the usage summary, a description of the meaning of each
compiler option is given. The —HELP option is described below.

p -FULL_OPTIMIZE

Abbreviation: -FOPT

-FULL,_OPTIMIZE ensures that the maximum amount of optimization
available is used. A note in the listing file will show the current
level of optimization implied by the use of this option. The default

of —FULL_OPTIMIZE is equivalent to OPT 6; however, -CLUster must be
specified additionally to achieve inline expansions.

p -HELP
Abbreviation: -H

The -HELP option produces information on using the F77 compiler. The
compiler displays a usage summary and a list of all options available.

P -INPUT pathname
Abbreviation: -I

This is an obsolete option. -INPUT is an alternative way to specify
the source of the compilation. pathname specifies the name of the
source progran. If pathname is TIY, then input will come from the
terminal. This option should not be used if the pathname immediately
follows the F77 command. This is the same as the —SOURCE option.

Fourth Edition, Update 2 9-12

COMPILING YOUR PROGRAM

p *-INTL / -INTS

These options determine default lengths for type INTEGER data items
whose length is not explicitly declared.

The -INTL option specifies that every type INTEGER data item, including
constants and parameters, will be compiled as INTEGER*4 unless the item
has been explicitly declared INTEGER*2 in a type statement.
The -INTS option specifies that every such data item will become
INTEGER*2 unless it is explicitly declared INTEGER*4. A constant will
remain INTEGER*4 under -INTS if:

e Its value lies outside the INTEGER*2 range.

@ Its representation, including leading zeros, contains more than
five decimal or six octal digits.

The F77 compiler acts as a standard-conforming compiler only when it is
invoked with -INTL.

P -LISTING [destination] / *-NO_LISTING
Abbreviation: -L / -NL
The -LISTING option controls the creation of the source listing file,

If you do not specify destination, the listing file is named
source-program.LIST. destination must be one of the following:

TTY The listing will be displayed at the terminal.

SPOCL, The listing will be spooled directly to the 1line
printer. Default SPOQL arguments are in effect.

pathname The listing will be written to the file named
pathname.,LIST

-NO_LISTING causes no listing file to be created.

P *-LOGL / -LOGS
The -LOGL. and -LOGS options determine default lengths for type LOGICAL

data items whose length is not explicitly declared, and for the logical
constants.

9-13 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

-LOGL specifies that every type LOGICAL data item will be compiled as
LOGICAL*4 unless the item has been explicitly declared LOGICAL*2 in a
type statement. This is the default.

-10OGS specifies that every type LOGICAL data item will be compiled as
LOGICAL*2 unless it is explicitly declared LOGICAL*4 in a type
statement.

The F77 compiler acts as a standard-conforming compiler only when it is
invoked with -LOGL.

P -MAIN program entry—name

-MAIN specifies a top-level routine as the main program entrypoint.
This option is used in conjunction with the -CLUSTER option.

p -MAP / *-NO_MAP (Implies -LISTING)
Abbreviation: -MA / -NMA

The -MAP option produces a listing file that contains a reference map
of data and procedure names. To get a full cross-reference of usage
information for each symbolic name, use the —-XREF option.

NO_MAP produces a listing file that includes only the program and error
messages without a variable reference map.

P -MAPWIDE [decimal integer] (Implies -LISTING)
Abbreviation: -MAPW

-MAPWIDE specifies the width in number of characters of the
cross-reference map that appears in the listing file, as well as the
width of the options list that appears at the beginning of the listing
file. The legal range of values for the decimal integer argument is
from 80 to 160 inclusive. The default width of the cross-reference
map, if -MAPWIDE is not specified is 80, provided that a listing is
being produced. The default width if -MAPWIDE is specified without an
arqument is 108.

Fourth Edition, Update 2 9-14

.

COMPILING YOUR PROGRAM

P> -MAX GROWTH_PERCENT [decimal_integer]
Abbreviation: -MXGR

—-MAX_GROWTH_PERCENT specifies a suggested limit to the growth of the
size of a program due to optimization. decimal_integer is the limit to
the growth expressed as a percent of the origimal program size. The
default percent is 100; the percent cannot be 0. This size is a
suggestion only; there is no guarantee that the growth in program size
will not exceed it.

P> -MAX SUB_STATEMENTS_INLINE [decimal integer]
Abbreviation: -MSSI

-MAX SUB_STATEMENTS_INLINE specifies the maximum number of executable
source line statements in a subroutine in order for it to be expanded
inline. The compiler optimizes for faster execution by avoiding the
overhead of procedure calls through inserting their code inline,
thereby having an effect on the size of programs.

If no argument is present, or if the option is omitted entirely, the
number of source lines defaults to 20.

P> -MAXERRORS [decimal integer]

Abbreviation: -MAXE

—MAXERRORS specifies the maximum number of compilation errors to be
reported. If in a given compilation the specified maximum is reached,
then an error message is issued and the compilation is aborted. The

legal range for the number of errors to be reported is 1 to "infinity"
(32767) .

The default maximum number of errors, if -MAXERRORS is not specified,

remains 100; the maximum number of errors that can be reported if
—-MAXERRORS is specified without a decimal argument, is "infinity".

P -NESTING / *-NO_NESTING (Implies -LISTING)

Abbreviation: -NE / *-NNE

The -NESTING option generates oompiler listing files with numbers
alongside each statement indicating the nesting level of the statement

within the compilation unit.

When —NESTING is invoked, the -LISTING option is enabled and a column

9-15 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

of numbers appear between the statement ID numbers (at the lefthand
margin) and the F77 statements. For example:

Statement Nesting F77
Number Level Stmt

J=10
DO 100 I = 1,10
K(I) =1
IF (I .EQ. 5) THEN
J=J+ 2
FLSE
J=J -1
ENDIF
PRINT *, K(I)
100 CONTINUE
END

= 000~ Ul W N

~ o
OHKFHFFRFNNHENHEPOO

—-NO_NESTING disables the option.

P> -OFFSET / *-NO_OFFSET (Implies -LISTING)
Abbreviation: -OFF / -NOFF

The —-OFFSET option appends an offset map to the source listing. For
each statement in the source program, the offset map gives the offset
in the object file of the first machine instruction generated for that
statement.

P> *-OPTIMIZE [decimal-integer]
Abbreviation: -CPT

-OPTIMIZE controls the optimization phase of the compiler. Optimized
code runs more efficiently that non—optimized code, but takes somewhat
longer to compile. The decimal-integer that follows -OPTIMIZE
specifies one of the following levels:

Level Meaning

0 Performs no optimizations. Turns optimization off.

Fourth Edition, Update 2 9-16

—

COMPILING YOUR PROGRAM

1 Replaces certain code patterns with more efficient ones.

2 Eliminates common subexpressions. (-OPT 2 is the default
level of optimization.)

3 Moves invariant expressions outside of loops.

4 Performs strength reduction in loops, optimizes GOTOs and

statement labels, optimizes certain conditional branches,
performs loop test oopy, performs inductive variable
replacement, optimizes locp array addresses. When used
with -CLUSTER, makes quick procedure calls where
possible.

5 Performs constant propagation, integer constant folding,
detects uninitialized variables, eliminates dead
computations, optimizes discovered loops, performs
straightline array addresses, performs strength reduction
with SAVEd and COMMON variables.

6 Provides inline expansion of statement functions. When
used with -CLUSTER, provides inline expansion of
subroutines.

Note

Each optimization level performs all the optimizations of the
next lower level, plus those that are listed.

The level of optimization that you select is identified in the
optimization note of the compiler's listing output file.

P> -OVERFLOW / *-NO_OVERFLOW

Abbreviation: -OVF/ -NOVF

The -OVERFLOW option enables the integer exception handling mechanism
when integer arithmetic causes an integer to be larger than the data
item to which it is assigned, or a divide by zero is encountered.

—OVERFLON affects integer calculations only. It causes FIXEDOVERFLOW
to be raised at runtime if the result will not fit.

-NO_OVERFLOW does not enable integer overflow conditions.

9-17 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

For example:

INTHGER*2 I, J, K

I=10
J = 32767
K=20
K=I+1J
STOP
END

OK, F77 O(WF —OVERFLOW

0000 ERRORS [<.MAIN.> F77 Rev. 19.4]
OK, BIND -LOAD OVF -LI

[BIND rev 19.4]

BIND COMPLETE

OK, RESUME OWF

FIXEDOVERFLOW raised at 4345(3)/1012
(fixed binary)

ERROR raised at 4345(3)/1012
(no on—unit for FIXEDOVERFLOW)

Here is an example of a divide by zero encountered at runtime:

INTEGER*2 I,J,K
=10

J=32767

K=0

I=J/K

STOP

END

OK, F77 ZERO —QVERFLOW

0000 ERRORS [<.MAIN.> F77 Rev. 19.4]
OK, BIND -LCAD ZERO -LI

[BIND rev 19.4]

BIND COMPLETE

OK, R ZERO

7ERODIVIDE raised at 4351(3)/1011
(fixed binary)

ERROR raised at 4351(3)/1011
(no on-unit for ZERODIVIDE)

Note

If you specify the -OVERFLOW option under
circumstances, you may receive a FIXEDOVERFLOW error
unexpectedly. If your program

Fourth Edition, Update 2 9-18

certain
message

COMPILING YOUR PROGRAM

1. Contains INTEGER*2 or INTEGER*4 variables, and
2. Contains an IF statement comparing these variables,

then the computation in the comparison may cause an overflow
even though the integers themselves are within the INTEGER*2 or
INTEGER*4 range of values. For example, the statements

INTEGER*2 I, J

I=5

J = -32765

IF (I .LT. J) THEN WRITE (1,*) 'THIS WILL NEVER PRINT'

generate a runtime overflow message, because the compiler
performs the computation

5 - (-32765)

which yields 32770. 1In most such cases the solution is either
to declare the variables INTBGER*4 or to change the comparison.
Rewriting the IF statement above as

IF (J .GE. I) WRITE (1,*) 'ALL OK'

solves the problem.

p -PBECB / *-NO_PBECB
Abbreviation: -PBECB / —-NPBECB

~-PBECB causes F77 to place the Entry Control Block (ECB) of each
subprogram it compiles into the procedure frame, except for BLOCKDATA
subprograms that do not have an ECB. The compiler ignores this option
when it is compiling a main program; it will always put a main
program's ECB into the link frame.

The -PBECB option is wuseful for large programs that have many
subprograms. On shared systems, users running programs compiled with
this option have smaller working sets, and will demand less of system
paging resources.

-NO_PBECB does not place Entry Control Blocks in the procedure frame.

9-19 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Note

It is recommended that you do not use —PBECB when creating an
EPF using BIND. Because EPFs have read-only procedure ocode,
they cannot make full use of object files that have been

compiled with this option. The procedure will not be shared
between users.

P> —PRODUCTION / *—NO_PRODUCTION
Abbreviation: =-PROD / -NPROD

—PRODUCTION generates oode for partial debugger functionality.
—PRODUCTION is similar to DEBUG , except that the code generated will
not permit insertion of statement break points. Execution time
increases less than when DEBUG is given.

—NO_PRODUCTION causes no production—type code to be generated.

P -RANGE / *-NO_RANGE
Abbreviation: -RA / -NRA

The -RANGE option controls error checking for out-of-bounds values of
array subscripts and character substring indexes. Error-checking code
is inserted into the object file. If an array subscript or character
substring index takes on a value outside the range specified when the
referenced data item was declared, a runtime error will be generated.
This option is not designed to work on assumed-size arrays.

—-NO_RANGE causes no code to be generated to check for out—of-bounds
values of subscripts and indexes.

P -savE
Abbreviation: -SA

—-SAVE allocates storage statically. This option is the opposite of the
~-DYNM option, which allocates storage dynamically. Static storage
variables are kept in the 1link frame. They exist at all times, and
maintain their values until the program temminates.

All variables specified in a SAVE statement or initialized in a DATA or

type-statement are static. All variables in COMMON are static. This
option affects only variables not SAVEd or in COMMON.

Fourth Edition, Update 2 9-20

COMPILING YOUR PRCGRAM

P *-SILENT [decimal-integer]
Abbreviation: -SI

The —SILENT option, when used with a decimal argument, suppresses the
printing of error and warning messages of the severity you specify in
decimal-integer. The error and warning messages will be omitted from
any listing files generated. Severity levels are listed in Table 9-1.

If no value is given, a value of 1 is assumed. The option header in
the listing file will show the level of severity you specify in
decimal-integer.

P> -SOURCE pathname
Abbreviation: -5

This is an obsolete option. -SOURCE specifies the source of the
compilation. pathname specifies the name of the source program. If
pathname is TIY, then input will come from the terminal. This option
should not be used if pathname immediately follows the F77 command.

P -SPACE

—-SPACE specifies that space reduction is to be given preference over
speed in optimization consideration. This option is the opposite of
~TIME, which favors speed over space in reducing the size of optimized
code.

P> -STANDARD / *-NO_STANDARD

Abbreviation: -STAN / *-NSTAN

The —STANDARD option allows you to detect PRIME extensions in your
program that might inhibit successful compilation on other commercially
available FORTRAN 77 compilers., '

When invoked, severity 1 warning messages will attempt to £flag those
portions of FORTRAN 77 code or items that violate ANSI standards which
are detectable at compile time. The error messages will be in Kkeeping
with the current form and behavior of all error messages currently
delivered by F77. See Appendix F for a list of ANSI Standard
violations flagged when this option is used.

9-21 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

> —-STATISTICS / *-NO_STATISTICS
Abbreviation: -STAT / -NSTAT

—-STATISTICS displays a list of compilation statistics at the temminal
after each phase of compilation. For each phase the list contains:

DISK Number of reads and writes during the phase,
excluding those needed to obtain the source file,

SECONDS Elapsed real time.

SPACE Internal buffer space used for symbol table, in 16K
byte units.

NODES The number of symbol table nodes that the compiler
is using in the program.

PAGING Disk I/0 time.

CPU CPU time in seconds, followed by the clock time

when the phase was completed.

The -NO_STATISTICS option does not display compilation statistics at
the terminal.

Here is an example of compilation statistics generated using the
—STATISTICS option:

OK, F77 FRIDAY —STATISTICS
[F77 Rev. 19.41
PHASE DISK SEQONDS SPACE NODES PAGING CHrJ

FORTRAN 0 0 5 73 0.00 0.53 21:19:53
DECLARE 0 0 5 73 0.00 0.09 21:19:53
ALLOCATOR i 1 5 88 0.00 0.17 21:19:54
VMOLE 2 0 6 124 0.00 0.60 21:19:54
TOTAL 3 1 6 124 0.00 1,39 21:19:54
(ODE SIZE: 102
STATIC SIZE: 34
SCURCE LINES: 16
LINES PER MIN: 671

0000 ERRORS [<.MAIN.> F77 Rev. 19.4]
OK,

P> *-STORE_CWNER FIELD / -NO_STORE_CWNER FIELD
Abbreviation: -SOF/ —NSOF
—STORE_OWNER_FIELD stores the identity of the current program in a

known place for use by traceback routines. This option is useful for

Fourth Edition, Update 2 9-22

COMPILING YOUR PROGRAM

debugging F77 programs, since utilities such as DMSTK will have access
to module names. Use of this option will increase the size of the
generated code and linkage and will slightly degrade execution time of
user's programs.

The -NO_STORE_OWNER_FIELD option omits this small code sequence for
extremely time-critical programs.

P *-TIME
The -TIME option specifies that speed is to be given preference over
space reduction in optimization consideration. This option is the

opposite of -SPACE, which favors space over speed in reducing the size
of optimized code.

P *-UPCASE / -LCASE
Abbreviation: -UP / -LC

The —UPCASE option treats all lowercase letters in the source program
as uppercase, except in Hollerith and CHARACTER constants.

-LCASE distinguishes lower and uppercase characters in the source
program. Keywords must be in uppercase only.

P> —XREF / *-NO_XREF (Implies -LISTING)

Abbreviation: =-XR / —-NXR

The -XREF option appends a cross reference to the source listing. A
cross reference lists, for every symbolic name, the number of every
line on which the variable was referenced.

Also, the letter A or M may be appended to a line number. If the
letter A appears, it indicates that the symbolic name is an argument.
If the letter M appears, it indicates that the variable was modified
(that it appeared on the left-hand side of an assignment operator).

On the printout of a cross reference listing, under the column SIZE
(DEC), C refers to character, and H refers to half-words.
-NO_XREF does not generate a cross-reference listing.

Figure 9-2 contains an example of a cross-reference listing.

9-23 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

OK, F77 FRIDAY -XREF
[F77 Rev. 19.4]
0000 ERRORS [<.MAIN.> F77 Rev. 19.4]

OK, &LIST FRIDAY.LIST

SQURCE FILE: <MONTH>DAY>FRIDAY.F77

COMPILED ON: 850211 AT: 21:21 BY: F77 REV. 19.4

Options selected: FRIDAY -XREF

Optimization note: Currently "-OPTimize" means "-OFTimize 2",
"~Full_OPTimize" means "-OPT'imize 4", and default is "-OPTimize 2".

Options used(* follows those that are not default):
64V Allow_PREconnection No BIG Binary No DClvar No DeBuG No D01 D¥nm
No_ERRList ERRTty No_EXPlist No FRN No FIN_Entry INTL Listing* LOGL MAp
No_OFFset OPTimize(2) MO _OverFlow No PBECB No PRODuction No_RAnge
SIlent(-1) TIME No STATistics No Store Owner Field UPcase XRef*

1 ¢

2 INTEGER*2 ARRAY(5), TOTAL

3 DATA ARRAY/10,200,40,55,78/
4 TOTAL=0

5 DO 100 J=1,5

6 TOTAL=TOTAL+ARRAY (J)

7 IF(J.EQ.3) THEN

8 WRITE(1,110) TOTAL

9

10 110 FORMAT(I4)

11 ENDIF

12 100 CONTINUE

13 WRITE(1,200) TOTAL

14 200 FORMAT('THE TOTAL OF ARRAY = ',I4)
15 STOP

16 END

EXTERNAL ENTRY BFOINTS
ENTRY FOINT PROGRAM UNIT LINE TYPE

«MATN. 2 ENTRY REF 2

MATN PROGRAM ,MAIN, ON LINE 2

SYMBOLIC STORAGE SIZE IOC ATTRIBUTES

NAME CLASS (DEC) (OCT)

100 CONSTANT EXECUTABLE LABEL. LINE 12 REF 5 12

110 CONSTANT FORMAT LABEL: LINE 10 REF 8 10

200 CONSTANT FORMAT LABEL LINE 14 REF 13 14

ARRAY STATIC 5H 000024 INTEGER*2 DIMENSION(5) INITIAL RE
236

J DYNAMIC 2H 000054 INTEGER*4 REF 5 6 7

Cross-reference Listing Generated Using -XREF
Figure 9-2

Fourth Edition, Update 2 9-24

Table 9-2

COMPILING YOUR PROGRAM

Summary of Compiler Options and Abbreviations

ion Abbreviation Significance
-321 Produce 32I mode
code
-321X Produce optimized 32I mode
code
* -4V Produce 64V mode code
* —ALLOW_PRECONNECTION —APRE Use of preopened files
-BIG -BIG Boundary-spanning code
* -BINARY -B Creation of object file
—CLUSTER -CLU Cluster routines for
optimization
-D_STATEMENT -DSTMT Treats statements with "D"
in column 1 as source code
—DCLVAR -DC Flag undeclared variables
—-DEBUG —-DBG Debugger code
-DO1 -DO FTN DO loops
* -DYNM -DY Dynamic storage default
~EXTENDED_CHARACTER_SET -ECS CHAR returns ECS characters
—ERRL IST —ERRL Create errors-only file
* -ERRTTY —ERRT Write errors to terminal
-EXPLIST -EXP Expanded source listing
-FRN Floating point round option
—FIN_ENTRY —FTNE Procedure names passed
as arguments, are being
passed to FIN
~FULI, HELP -FH Usage information, option
list, and description
—FULIL,_OPTIMIZE -FOPT Full optimization
* Denotes Default Option
9-25 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Table 9-2 (continued)
Summary of Compiler Options and Abbreviations

-MAX SUB_STATEMENTS_TNLINE —MSSI

ion Abbreviation Significance

—HELP -H Usage information
and option list

-INPUT -I Designate source file

* —INTL - INTL Long integer default

—INTS —INTS Short integer default

-LCASE -LC No source-file case
conversion

-LIST -L Creation of source listing

* -LOGL Long logical-data default

-LOGS Short logical-data default

-MAIN Main entry point of program

-MAP -MA Listing of data and
procedure names

-MAPWIDE -MADW Specify width of cross-
reference map and
options list

—MAXERRORS -MAXE Maximum number of errors
allowed in a compilation

-MAX GROWTH PERCENT -MXGR Specifies suggested limit to

growth of program size

Provides maximum number
of executable statements
in subroutines

—NESTING —-NE Provides nesting level
mumbers for statements
~NO_ALI,OF_PRECONNECTION —NAPRE No use of preopened
files
* -NO_BIG -BIG No boundary-spanning code
-NO_BINARY -NB No object file
* Denotes Default Option
Fourth Edition, Update 2 9-26

A

COMPILING YOUR PROGRAM

Table 9-2 (continued)
Summary of Compiler Options and Abbreviations
ion Abbreviation Significance
* =NO_D_ STATEMENT —NDSTMT Treats statements with "D"
in column 1 as comments
* —-NO _DCLVAR —NDC Don't flag undeclared
variables
. * —-NO_DEBUG —-NIBG No debugger code
* -NO_DO1 —NDO F77 DO loops

* —NO_EXTENDED_CHARACTER SET —NECS

CHAR returns only 7-bit
BASCII characters

* -NO_ERRLIST —NERRL No errors-only file
—NO_ERRTTY ~NERRT No errors to terminal

* -NO _EXPLIST —NEXP No expanded source listing

* -NO_FRN —NFRN No floating point option

* ~NO_FTN_ENTRY -NFTNE Procedure names being passed
as arguments are being
passed to F77.

* —-NO_LISTING —NL No source listing

* -NO MAP -NMA No listing of data and
procedure names

. —NO_NESTING -NNE Don't provide block level

numbers for statements

* -NO_OFFSET -NOFF No offsets in source listing

* -NO_OVERFLOW -NOVF No integer overflow

* -NO_PBECB —NPBECB Don't load ECBs into
procedure frame

* -NO_PRODUCTION —NPROD No production code

* —NO_RANGE —NRA No range checking

* —NO_STANDARD —NSTAN Don't flag ANSI
standard viclations

s * Denotes Default Option
9-27 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Table 9-2 (continued)
Summary of Compiler Options and Abbreviations

ion Abbreviation Significance
* -NO_STATISTICS ~NSTAT Don't print statistics
* -NO_STORE_CWNER_FIELD ~NSOF No module names generated
* —-NO_XREF -NXR Doesn't generate cross
reference
—OFFSET -QFF Offsets in source listing
* —QOPTIMIZE -OPT Optimize object code
—OVERFLOW -VF Enables integer overflow
~PBECB Load EBs intc procedure
frame
—PRODUCTION -PROD Generate production code
~RANGE -RA Check subscript ranges
—-SAVE -8A Static storage default
* —SILENT -SI Suppress warning messages
(default is level 1)
—SOURCE -S Designate source file
—-SPACE Space over time in
optimization
—~STANDARD —-STAN Flag ANSI standard violations
—STATISTICS -ST Print compiler statistics
—STORE_CWNER_FIELD —-SOF Module names are generated
into program code for
debugging use
* -TIME Time over space in
optimization
* -UPCASE -UP Convert to uppercase
—XREF -XR Generate cross-reference
* Denotes Default Option
Fourth Edition, Update 2 9-28

Linking and
Executing Your
Program

After you have successfully created an object £file using the F77
compiler, you are ready to link and execute your program using the
PRIMIS utilities BIND and RESUME. This chapter discusses:

e How to use BIND to link your program.

@ How to use the RESUME command to get your program running.

BIND

BIND is a linking utility that creates an executable program format
runfile from an object file. This runfile, known as an Executable
Program Format (EPF), is the executable version of your program. Some
advantages of EPFs are:

e They are dynamic; they can execute in any segment, or segments,
of PRIMDS,

e They do not need to use the same segment each time they are
invoked.

e They are RESUMEable.

® Several programs can exist in memory at one time without
overwriting each other.

® Programs can call other programs.

10-1 Fourth Edition

FORTRAN 77 Reference Guide

For more information on EPFs, see the Programmer's Guide to BIND and
EPFs.

USING BIND
You can use BIND to create an EPF in one of two ways:

1. Interactively by invoking subcommands of BIND. (This 1is the
subsystem form.)

2. Directly from the PRIM)S command line., (This is the command
form.,)

Note

To allow BIND to operate most efficiently, your object file
should have a .BIN suffix. If you follow the compilation steps
as explained in Chapter 9, the F77 compiler will automatically
generate an object file with a .BIN suffix. Naming conventions
are discussed in ABQUT THIS BOOK.

Using BIND Interactively

To invoke BIND interactively, type the command

BIND [EPF-filename]

where:

EPF-filename is the name of the EPF that you want BIND to
create, BIND saves the runfile in a directory that you specify
with the name EPF-filename.RUN. If you do not specify the
EPF-filename, BIND adds the .RIN suffix to the first object
file that you load, saving the runfile in the directory you

specify.

You have now entered the BIND subsytem. You know you're there when you
see the colon prompt. You will see this prompt each time you press the
carriage return until you leave BIND. That's when your system prompt
will return.

Fourth Edition 10-2

LINKING AND EXECUTING YOUR PROGRAM

Here is an example of using BIND interactively:

OK, BIND MYF77_ PROG /*invoke BIND and name runfile
[BIND rev 19.4] /*BIND version number

: LOAD TEST /*load TEST.BIN

: LOAD SUB1 /*load SUBl.BIN

s LT /*load system libraries

BIND COMPLETE /*load completion message

: FILE /*save the EPF, and,

OK, /*return control to PRIMOS

In this example, the EPF is filed in your directory and has the name
MYF77_PROG.RUN. If you do not specify a filename for the EPF when you
invoke BIND, BIND automatically takes the name of the first object file
that you load and adds a .RUN suffix.

Using BIND From the Command Line

To create an EPF runfile from the PRIMS ocommand line, type the
command :

BIND [EPF-filename] [—options]
where:

EPF-filename is used in the same way as when you invoke BIND
interactively as a subsystem,

options given on the command line correspond to internal BIND
commands., You must precede each option with a hyphen.

Here is an example of using BIND on the command line:

OK, BIND MYF77_PROG -IOAD TEST SUBl -LI
BIND rev 19.4]
BIND QOMPLETE
OK,

In the above example, BIND creates an EPF that has the name
MYF77_PROG.RJN containing the 1linked object £files, TEST.BIN and
SUB1.BIN. At this point, BIND displays the message BIND COMPLETE and
returns control to PRIMOS,

10-3 Fourth Edition

FORTRAN 77 Reference Guide

Basic BIND Commands

You can link your F77 program modules with the following basic BIND

commands :

e IOAD

@ LIBRARY

e FILE

@ MAP

e QUIT

@ HELP

For a brief description and example of each of these oommands, see
Table 10-1
BIND: Basic Commands

Command Description Example

LOAD Loads one or more object : Lo test
files

LIBRARY Loads one or more libraries : Li MYLIB

FILE Saves runfile : File MYPROG

MAP Checks for unresolved : MAP -UN
references

QUIT Ends bind session without : QUIT
saving runfile

HELP Gives online help on bind : HELP -ILOAD
commands and options

Fourth Edition

10-4

i\. b

LINKING AND EXECUTING YOUR PROGRAM

Using the LOAD command: This command links your program, starting with
the main procedure and followed by subprograms in any order. The LOAD
command has the following format:

LOAD pathname-1 [pathname-2 pathname-3...]

Each pathname is the name of an object file that you want to bind to
the current EPF. If there is no existing EPF, and you do not specify
one on the command line, BIND creates one with the name you give in the

first pathname.

For example:

: LOAD HOME /*links the object file
with the name BOME,.BIN, and
files the runfile HOME.RUN
in your directory.

Using the LIBRARY Command: This command is used for linking the
standard system 1libraries needed by F77, as well as libraries that you
create. The LIBRARY command has the following format:

LIBRARY [library-name-1 library-name-2 library-name-3...]

When you issue the LIBRARY command without specifying a library-name,
BIND autamatically links the standard system libraries that are kept in
a directory called LIB. To link libraries that you have created, you
must specify the pathname of the file in library-name.

For example:

: LI SAMPLE>MYLIB /*1links the file MYLIB.BIN
from the directory SAMPLE.
(You must link the libraries
created by you before
system libraries.)

: LI /*1links the standard system
libraries

Once the standard system libraries have been linked, you should receive
a BIND COMPLETE message. If you don't, use the MAP command to identify
any unresolved references.

10-5 Fourth Edition

FORTRAN 77 Reference Guide

Using the FILE Command: The FILE command saves the EPF runfile to
disk, The FILE command has the following format:

FILE [EPF-filename]

BIND responds to the FILE command by processing the EPF and filing the
runfile in your dirctory with a .RUN suffix, If you already have an
EPF with the same name, BIND will overwrite the existing EPF. When
BIND completes processing the EPF, control is returned to PRIMDS.

For example:

OK, BIND /*invoke BIND interactively

[BIND REV 19.4] /*BIND version number

: LOAD TEST /*link TEST.BIN

: LI /*link standard system libraries

BIND COMPLETE /*BIND completion message

: FILE NEW_TEST /*file the EPF in your directory
with the filename NEW TEST.RIN

OK, /*return control to PRIMDS

If you are using BIND from the command line, you do not have to specify
the file command. By default, BIND will add the FILE command to the
end of the command line:

OK,BIND -I0 TEST -LI
[BIND rev 19.4]

BIND COMPLETE

OKr

BIND automatically adds a FILE command and saves the runfile in your
directory with the name TEST.RIN.

Using the MAP Command: Use the MAP command to get a load map of any
unresolved subroutine, program, or common block references. The MAP
command has the following format:

MAP [pathname] [option]

pathname specifies that the map is written to a file instead of being
printed at your terminal. The most useful option you can use with the
MAP command is the —UNDEFINED option. ‘This option 1lists only the
unresolved references in your program. For a complete list of options
that you can use with this command, see the Programmer's Guide to BIND
and EPFs.

Fourth Edition 10-6

LINKING AND EXECUTING YOUR PROGRAM

For example:

: MAP MYMAP /*writes a standard map of
your program to the file
MYMAP
MA -UN /*displays a list of the

unresolved references

Using the QUIT Command: You can use the QUIT command to return to
PRIMDS without completing the binding process. The QUIT command used
as an option on the command line causes BIND not to create an EPF, The
QUIT command has the following format:

QUIT

The QUIT command ends a BIND session without saving the current EPF,
BIND asks you for a verification if the EPF is not filed before
returning to PRIMIS.

For example:

OK, BIND /*invoke BIND interactively

: LOAD TEST /*link TEST.BIN

: LI /*link system libraries

BIND COMPLETE /*BIND completion message

: QUIT /*terminate binding session
EPF not filed, ok to quit? ('Yes', 'Y', 'No', 'N'): ¥ /*verify
OK, /*return control to PRIMIS

Using the HELP Command: BIND has a built—-in help facility that you can

use when you are working interactively. The HELP command has the form:

HELP [command-name] [-LIST]

10-7 Fourth Edition

FORTRAN 77 Reference Guide

If you use the -LIST option, BIND will display a list of all the
commands available. To get help on a specific command, use this
command followed by the command name.

For example:

OK, BIND
[BIND rev 19.4]
: HELP FILE
FILE [<epfname>]
will exit to PRIMDS after filing the EPF.
If <epfname> is specified, the EPF will be named <epfname>.RUN
: 0
OK,

RESUME

Once your program has been compiled, and an EPF runfile has been
created with BIND, you are ready to run your program using the RESUME
command. This command has the following format:

RESUME [EPF-filename]

The RESUME command looks in your directory for the file you specify in
EPF-filename having .RUN suffix and begins execution of the EPF. The
finename must appear in the directory with a .RIN suffix or PRIMDS
returns with a NOT FOUND message. After you create the runfile you
will be able to run the program.

For example:

OK, RESUME MYF77_PRCG

Fourth Edition 10-8

11

Finding and
Correcting
Runtime Errors

This chapter introduces you to Prime's Source Level Debugger, DBG., The
Debugger is a separately priced product that you can use to help you
find out why your program failed at runtime., Working interactively
with the Debugger, you can stop the execution of your program at
critical points and examine the contents of program variables to see if
they're correct.
The DBG commands that you will learn about in this chapter are:

e DBG

e RESTART

e SOURCE

e BREAKPOINT

e (ONTINUE

e : , TYPE, and LET

e WATCH

e HELP and QUIT
This chapter will not teach you everything about the Debugger. You
will only 1learn enough to debug a simple F77 program. For a more

detailed discussion on this powerful tool, see the Source Level
Debugger's User's Guide.

11-1 Fourth Edition

FORTRAN 77 Reference Guide

HOW TO USE THE DEBUGGER

Before you can begin using DBG, you must first complete the following
steps:

1. Create and edit your program using ED or EMACS.
2. Compile your program using the -DEBUG compiler option.
3. Link your program using BIND.

Let's use a program called TEST.F77 to illustrate steps 2 and 3.

OK, F77 TEST -DEBUG /*Compile your program

[F77 Rev. 19.4] with the -DEBUG option.

0000 ERRORS [<.MAIN.> F77-REV 19.2] No errors.

OK, BIND -IOAD TEST -LI /*Link your program

[BIND rev 19.4] with BIND. Again, no

BIND COMPLETE errors,

OK, RESUME TEST /*Execute your program
with RESUME.

THIS IS AN F77 TO DBG TEST
ENTER A VALUE FOR X:

()]

"ENTER A VALUE FOR Y:
5

X+ Y= 5.00

kkdk S'IUP

OK,

As you can see, even though there were no errors at compilation or load
time, your program produces the wrong results, At this point you can
use the Debugger to find out what happened at runtime.

Entering the Debugger

To enter the Debugger from the PRIMDS command level, type the following
command

DBG EPF-filename
where:

EPF-filename is the name of the executable program file you
want to dehudg.

Fourth Edition 11-2

FINDING AND QORRECTING RUNTIME ERRORS

Once you have entered the Debugger subsystem, IBG will prompt with a
right angle bracket prompt. You will also see some Debugger software
identification information displayed. Here is an example of invoking
the Debugger to debug TEST.F77.

OK, DBG TEST

*¥Dbg** revision 1.1 - 19.1 (5-March-1984)

>

At this point the debugger is waiting for you to enter commands in
response to the right angle bracket prompt.

RUNNING YOUR PROGRAM WITHIN THE DEBUGGER

To start the execution of your program from within the Debugger, use
the RESTART command. This command restarts program execution at any
point within the Debugger. Here is an example of the RESTART command:

OK, IBG TEST
Dbg revision 1.1 - 19.1 (5-March—1984)
> RESTART

THIS IS AN F77 PROGRAM TO DBG TEST
ENTER A VALUE FOR X:

U

"ENTER A VALUE FOR Y:
3

X+ Y= 5.00

kdkk SIIOP

Program stop at SMAIN\9.
>

You can use this command whenever you want to restart execution of your
program at the beginning of the main procedure.

Note

If you use the RESTART command after execution of your program
begins, the variables initialized in a DATA statement will not
be reinitialized.

113 Fourth Edition

FORTRAN 77 Reference Guide

LOOKING AT YOUR SQURCE PROGRAM

If you want to take a look at the source code of your program without
leaving the Debugger subsystem, use the SOURCE command. This command,
with it's EDITOR-1like subcommands, allow you to move around your source
program, The SOURCE command has the following format:

SOURCE source-command [argument]

where:

source-command is any EDITOR subcommand that can be used with
SOURCE .

arqument is an EDITOR source subcommand object that may or may
not be used. A 1line number or text string are examples of

argument.

Table 11-1 gives a list of the most frequently wused source EDITOR
subcommands that you will use with the SOURCE command. For more
information on the source EDITOR commands, see THE NEW USER'S GUIDE TO
EDITOR AND RUNDFF.

Table 11-1

SOURCE Subcommands (From ED)
(abbreviations are underlined)

Subcommand Description
TOP Position line pointer to top of file,
BOTTOM Position pointer to bottam of file.
PRINT Print line(s).
WHERE Print current line number.
FOINT Position to specific line,
NEXT Move line pointer forward or backward.
LOCATE Locate line with the specified text string.
FIND Locate line with the specified text string
- beginning in a given column.

Fourth Edition 11-4

FINDING AND CORRECTING RUNTIME ERRORS

The following example shows how to use the SOURCE command with the
PRINT, TOP, FOINT, and NEXT subcommands:

OK, DBG TEST

Dbg revision 1.1 - 19.1 (5-March-1984)

> SOURCE PRINT 23

1: WRITE (1,%*) '"THIS IS AN F77 PROGRAM TO DBG TEST!
2: WRITE(1,*) '"ENTER A VALUE FOR X: '
3: READ(1,*)X
4: WRITE(1,*)'ENTER A VALUE FOR Y: !
53 READ(1,*)Y
62 XY = X
7: WRITE(1,10)XY
8: 10 FORMAT(1X,'X + Y= ',1X,F6.2)
9: STOP
10: END
BOTTOM
> SOURCE TOP
> SOURCE ROINT 5
5: READ(1,*)Y
> SQURCE NEXT
6: XY = X

>

By looking at your source program, you notice that you have coded your
program incorrectly. The expression in line number 6 is not correct;
it should read X¥ = X + Y. When you reedit, recompile and relink your
program, the wvalue for XY will be correct. However, for the sake of
illustrating a few more basic debugger commands, we're not going to
change the source code,

STOPPING EXECUTION OF YOUR PROGRAM

By using the BREAKPOINT command, you can suspend the execution of your
program and take a look at the data at that point. The BREAKPOINT
command has the following format:

BREAKPOINT breakpoint-identifier

where:

breakpoint-identifier is the number of the line in your program
where you want to suspend execution. Execution will stop
immediately before the line you specify in
breakpoint-identifier. You can find the source line number by
using the SOURCE command.

11-5 Fourth Edition

FORTRAN 77 Reference Guide

If you try to suspend execution on a nomexecutable statement,
Debugger will issue an error message.

Here is an example of how the BREAKPOINT command works:

OK, DBG TEST

*3Dhg**

revision 1.1 - 19.1 (5-March-1984)

> SCURCE PRINT 23

1:

-
.

SN U s WINY
ss os s

8: 10
9:
10:
BOTTOM

WRITE (1,*) "THIS IS AN F77 PROGRAM TO DBG TEST'
WRITE (1,*) 'ENTER A VALUE FOR X: '

READ (1,%*)X

WRITE(1, *) 'ENTER A VALUE FOR Y:

READ(1,*)Y

XY = X

WRITE (1,10)XY

FORMAT (1X, 'X + Y= ',1X,F6.2)

STOP

END

> BREAKPOINT 6

> RESTART

THIS IS AN F77 PROGRAM TO DBG TEST
ENTER A VALUE FOR X:

w

"ENTER A VALUE FOR Y:

5

**%*% preakpointed at SMAIN\6

You have suspended the execution of your

number 6.

CONTINUING EXECUTION OF YOUR PROGRAM

To begin program execution once again after

your program, use the CONTINUE command.

Fourth Edition

11-6

program just before line

setting a breakpoint in

FINDING AND CORRECTING RUNTIME ERRORS

Here is an example of how to use the CONTINUE command:

OK, DBG TEST
*Dbg** revision 1.1 - 19.1 (5-March-1984)

> BREAKPOINT 6

> RESTART

THIS IS AN F77 PROGRAM TO DBG TEST
ENTER A VALUE FOR X:

(9]

"ENTER A VALUE FOR Y:
5

**%*% phreakpointed at SMAIN\6
> CONTINUE

X+ Y= 5.00

*k%kk Slmp

Program stop at SMAIN\9.
>

EXAMINING AND MODIFYING DATA

There are three useful commands for looking at and changing the data in
your program: the colon (:), TYPE, and LET commands.

Using the : Command

The : command is used to look at the value of a variable or expression
while your program is suspended. To use this command, specify a
variable or expression after you issue the : character. The : must
be followed by a space.

Here is an example of how the : command works:

11-7 Fourth Edition

FORTRAN 77 Reference Guide

OK, DBG TEST

*¥pbg** revision 1.1 - 19.1 (5-March-1984)

> BREAKPOINT 6

> RESTART

THIS IS AN F77 PROGRAM TO DBG TEST
ENTER A VALUE FOR X:

wl

TENTER A VALUE FOR Y:

|t

**%% preakpointed at SMAIN\6
: X

]

5.000000E+00
t Y

= 5.000000E+00

VoWV MV

In the above example you can see that both X and Y, when evaluated with

the : command, have the value that was entered for them during program
execution,

Using the TYPE Command

The TYPE command is used to evaluate the data type of a variable or
expression. Frequently, a program fails due a data type mismatch.

Here is an example of the how to use the TYPE command:

OK, DBG TEST

Dpg revision 1.1 - 19.1 (5-March-1984)

> BREAKPOINT 6

> RESTART

THIS IS AN F77 PROGRAM TO DBG TEST
ENTER A VALUE FOR X:

[$,]

TENTER A VALUE FOR Y:
5

**%* preakpointed at MAIN\6
> TYPE X

real*4 automatic

> TYPE Y

real*4 automatic

>

Fourth Edition 11-8

FINDING AND CORRECTING RUNTIME ERRORS

Using the LET Command

The LET command allows you to assign a new value to a variable. By
doing this, you can test to see what would happen to the execution of
your program with these new values. To use the LET command, you assign
an expression to a variable with an equals sign(=).

Here is how the LET command works:

OK, DBG TEST
Dbg revision 1.1 - 19.1 (5-March-1984)

> BREAKPOINT 6

> RESTART

THIS IS AN F77 TO IBG TEST
ENTER A VALUE FOR X:

[§)]

"ENTER A VALUE FOR Y:

8]

**** breakpointed at SMAIN\6

>

5.000000E+00
T X = 10
2 X
1.000000E+01
NTINUE
X+Y¥Y= 10.00
* k%% S'IOP

AV VIRV ¥
-Eu

8"

Program stop at SMAIN\9.
>

VALUE TRACING

While you're in the Debugger subsystem, you can use the WATCH command

towatch or trace a variable to see how it changes during program
execution.

11-9 Fourth Edition

FORTRAN 77 Reference Guide

Here is an example of the WATCH command:

OK, DBG TEST
*¥Pbg** revision 1.1 - 19.1 (5-March-1984)
> RESTART

THIS IS A F77 TO DBG TEST
ENTER A VALUE FOR X:

(8]

"ENTER A VALUE FOR Y:
5

X + Y= 5.00

*kkk GTOP

Program stop at SMAIN\S.
> WATCH X
> RESTART
THIS IS AN F77 TO DBG TEST
ENTER A VALUE FOR X:
6
The value of S$MAIN\X has been changed at $MAIN\A4
from 5.000000E+00
to 6.000000E+00
ENTER A VALUE FOR Y:
5
X+ ¥= 6.00
*kkk SIIOP

Program stop at SMAIN\S.
>

GETTING HELP

If you run into trouble while you are working within the Debugger
subsystem, you can use the HELP command to get online help. The HELP
command has the following format:

~-LIST
HELP -SYM _LIST
command-name

—-syntax—-symbol

Fourth Edition 11-10

FINDING AND CORRECTING RUNTIME ERRORS

where:
-LIST prints a list of all DBG commands.
-SYM _LIST prints a list of syntax symbols.

command-name prints the syntax of command-name.

syntax-symbol prints the definition of syntax symbol.

For example:

OK, DBG TEST

Dbg revision 1.1 - 19.1 (5-March-1984)

> HELP TYPE /*command line syntax of
TYPE <expression> TYPE command.

> HELP EXPRESSION /*definition of syntax
<EXPRESSION>: symbol,

any valid expression in the default evaluation language
>

HOW TO LEAVE THE DEBUGGER

When you are ready to leave the Debugger and return to PRIMIS level,
use the QUIT command.
Here is an example of the QUIT command:

> QUIT
OK,

You are now at PRIMDS command level,

FOR MORE INFORMATION...

This chapter only gave you an introduction to using the Debugger.
There are many more features available with the Debugger that will
greatly expedite and simplify the process of debugging your programs.
For a thorough discussion of the Debugger, see the Source Level
Debugger User's Guide.

11-11 Fourth Edition

12

Optimizing F77
Programs

This chapter presents programming suggestions for improving the
performance of F77 programs. Some are reminders of good coding
practice. Others take advantage of implementation techniques in the
F77 compiler. All offer some speedup in program execution.

Multidimensional Arrays

Reference memory as sequentially as possible. For multidimensiomal
arrays, the leftmost subscript varies the fastest in FORTRAN 77. For
addressing large portions of an array, paging time and working set size
can be significantly reduced by indexing the leftmost subscript the
fastest (e.g., in the innermost loop). Thus,

DIMENSION ARRAY (100,100)
DO 20 I =1, 100
DO 10 J =1, 100
ARRAY (J, I) = 3.0
10 CONTINUE
20 QONTINUE

is more efficient than accessing the array as ARRAY (I, J) = 3.0.

12-1 Fourth Edition

FORTRAN 77 Reference Guide

If the program can be designed efficiently without multidimensional
arrays, memory addressing can be more efficient. For more than one
dimension, this saves one multiply per effective address calculation;
i.e., number—-of-multiplies = number-of-dimensions - 1. For instance,
the example above could be written as:

DIMENSION ARRAY (100,100)
DIMENSION INITARRAY (1)
EQUIVALENCE (ARRAY(1,1), INITARRAY (1))

DO 10 I = 1, 10000
INITARRAY (I) = 3.0
10 CONTINUE

saving considerable CPU time.

Loading and Memory Allocation

Paging time can be significantly reduced by loading subprograms by
frequency of use (rather than, say, alphabetically). The main program
must always be loaded first for BIND to work properly.

A suitable loading scheme would allocate memory as:

MATN
END
8 most common subroutines
: occasiomlly used subroutines

infrequently used subroutines

In subroutine libraries, the top down tree structure must be preserved
if reset force load is in use,

Fourth Edition 12-2

OPTIMIZING F77 PROGRAMS

This ordering method may also be used to order COMMON blocks in memory
by frequency of use.

For more information on using BIND, see the Programmer's Guide to BIND
and EFPFs.

Function Calls

When using function calls, eliminate redundant invocations of
user—supplied functions. For example:

TEMP = FUNC(X)
A = TEMP * TEMP

is faster than:

A = FUNC(X) * FUNC(X)

Make sure that the function has no side effects which might modify the
arqument (s) or anything else in the envirorment.

This practice is not necessary with intrinsic functions unless
optimization of the program unit is prevented by the -NO_OPTIMIZE
compiler option, because the F77 optimizer eliminates redundant
intrinsic function calls,

Input/Output

Significant speed improvement in raw data transfers can be achieved by
using the equivalent IOCS or file system routine instead of formatted
input/output. (These routines are listed in the Subroutines Reference
Guide.) For example:

INTEGER TEXT(40)
READ (5, 20, END= 99) TEXT
20 FORMAT (40A2)

is slower than
INTEGER TEXT (40)

CALL RDASC(5, TEXT, 40, $99)

12-3 Fourth Edition

FORTRAN 77 Reference Guide

* but the fastest yet is...

INTEGER TEXT(40), CODE
CALL RDLINS(l, TEXT, 40, CODE)

IF(QODE .NE. 0) /* Any error?
* GOTO 99 /* Yes, go process error.

There are also routines for reading/writing octal, decimal, and
one—-unit hexadecimal numbers from/to the terminal. For example,
CALL TIHEX(N) will read a hexadecimal integer from the terminal into
the short integer named N. For printing out text efficiently, use the
TNOU/TNOUA routines. See the Subroutines Reference Guide for more
specific information about these lower level routines.

Statement Sequence

The compiler can do register tracking, but cannot reorder statements.
For example, given the sequence:

A
X
R

iown
(se o ve)

the generated code is:

ILDA B
STA A
LDA Y (6 instructions long)
STA X
ILpbA B
STA R

If the source is rearranged to:

>
nmnon
W

Fourth Edition 12-4

B

OPTIMIZING F77 PROGRAMS

the generated code is reduced to:

IDA B
STA A
STA R (5 instructions long)
I Y
STA X

Parameter Statements

Initializing named constants via PARAMETER statements allows the
compiler to perform constant folding optimizations, resulting in faster
execution of statements using the named constants. The compiler does
not fold normal variables initialized by DATA statements into
constants.

Library Calls

Same applications library routines are not optimized for time critical
operations. The get and store character routines (GCHR$A, etc.) are
convenient, but comparatively slow. Some applications library routines
are by definition slow, because they use lower-level routines which can
more efficiently be called directly. Avoid using the MAX and MIN
functions when execution time must be minimized,

Applications library subroutines are designed to perform acceptably at
any task for which they might be called. When one particular task is
often required in a program, a user-supplied routine which is maximally
efficient at that one task can be substituted. See Chapter 8 and the
EXTERNAL Statement in Chapter 3.

Remember the 80/20 rule, which states: "80 percent of a program's time
is spent in 20 percent of the code." Therefore, standard library
routines are adequate in the nomtime-critical 80 percent of the
program.

Integer Division

When dividing a non-negative integer by a power of two, use the RS
(right shift) binary intrinsic function. For example:

I = RS(J, 3)

12-5 Fourth Edition

FORTRAN 77 Reference Guide

Is much faster than:

I=J3/8

Compiler Options

The following compiler options allow your program to execute faster and
more efficiently:

e —OPTIMIZE
e —CLUSTER
e -TIME

® -DYNM

Use of the —OPTIMIZE Option: This option allows you the choice of the
following levels of optimization:

0: Perform no optimizations. Turns optimization off.

1: Code pattern replacement,

2: Common subexpression elimination. (This is the default value.)
3: Loop invariant removal.

4: Strength reduction of some common operations including indexing
of large arrays. Elimination of unreachable code.

Use of the ~-CLUSTER Option: When the —CLUSTER option is specified on
the command line for F/7 in addition to optimization level 4, all the
subroutines in the file being compiled will become candidates to be

made quick.

Internally-nested procedures will be made quick, that is, called by a
Jump to Subroutine instruction rather than a Procedure call, if
conditions allow. The conditions under which a procedure will be made
quick are that it be called from only one place in your program. For
example, procedure C can be quick if it's called from procedure A.
However, if procedure C is also called from procedure B, where B is a
separate procedure from A, then C cannot be quick.

Fourth Edition 12-6

P,

OPTIMIZING F77 PROGRAMS

Use of the TIME Option: This option specifies that time is to be given
preference over space in optimization consideration.

The -TIME option is the default.

Use of the -DYNM Option: Prime F77 programs run more efficiently when
local variables are placed in the stack through the use of the -DYNM
option (the default). These variables are not guaranteed to be valid
after a return.

Conclusion

These are some of the more common guidelines for programming in Prime
F77. If you keep these ideas in mind while writing, or while
"fine tuning" FORTRAN 77 programs, your programs will generally be
smaller and faster. Some of these rules are not necessarily permanent.
As Prime F77 evolves more optimizations, you will have more freedom to
choose programming styles.

Generally it is easier to apply these techniques at initial coding
time, as opposed to going back and optimizing, While some of these
changes can be done easily with a few text editor commands, others may
require extensive changes to the source code.

Only specific techniques that can be described fairly briefly are
mentioned in this chapter. Many other examples of good programming
practice, and an excellent discussion of the more general aspects of
good programming, appear in the following text:

Kernighan and Plauger, The Elements of Programming Style,
McGraw-Hill, 1974

12-7 Fourth Edition

APPENDIXES

Prime Extended
Character Set

As of Revision 21.0, Prime has expanded its character set. The basic
character set remains the same as it was before Revision 21.0; it is
the ANSI ASCII 7-bit set, with the 8th bit always on. However, the 8th
bit is now significant; when it is turned off, it signifies a
different character. Thus the size of the character set has doubled
from 128 characters to 256 characters. This expanded character set is
called the Prime Extended Character Set (Prime ECS).

The pre~Revision 21.0 character set is a proper subset of Prime ECS.
These characters have not changed. Software written before
Revison 21.0 continues to run exactly as it did before. Software
written at Revision 21.0 that does not use the new characters requires
no special coding to use the old ores.

Prime ECS support is automatic at Revison 21.0. You can begin to use
characters that have the 8th bit turned off. However, the extra
characters are not available on most printers and terminals. Check
with your System Administrator to find out whether you can take
advantage of the new characters in Prime ECS.

Table A-1 shows the Prime Extended Character Set. The
pre-Revision 21.0 character set consists of the characters with decimal
values 128 through 255 (octal values 200 through 377). The characters
added at Revision 21.0 all have decimal values less than 128 (octal
values less than 200).

A-1 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

SPECIFYING PRIME ECS CHARACTERS

Direct Entry

On terminals that support Prime HBCS, you can enter the printing
characters directly; the characters appear on the screen as you type
them. For information on how to do this, see the appropriate manual
for your temminal.
A terminal supports Prime ECS if

1. It uses ASCII-8 as its internal character set, and

2. The TTY8 protocol is configured on your asynchronous line.

If you do not know whether your terminal supports Prime ECS, ask your
System Administrator.

On terminals that do not support Prime ECS, you can enter any of the

ASCII-7 printing characters (characters with a decimal value of 160 or
higher) directly by typing them.

Octal Notation

If you use the Editor (ED), you can enter any Prime ECS character by
typing:

“octal-value

where octal-value is the three-digit octal number given in Table A-l.
You must type all three digits, including leading zeroes.
Before you use this method to enter any of the ECS characters that have

decimal values between 32 and 127, first specify the following ED
command :

MODE CKPAR

This command permits ED to print as “nnn any characters that have a
first bit of 0.

Fourth Edition, Update 2 A-2

.

PRIME EXTENDED CHARACTER SET

Character String Notation

You can specify Prime ECS characters on any terminal by using one of
the notations shown below. However, the characters themselves can only
appear on a temminal that supports Prime ECS. Other terminals will not
display the new characters correctly.

The following rules describe how to specify Prime ECS characters in
character strings.

Ly

You can specify printing characters in character strings by
enclosing them in single quotation marks ('). For example:

'Quoted string'

You can enter the characters using either direct entry or octal
notation as described in the beginning of this section.

You can specify any character in Prime ECS that has a mnemonic
as follows:

\ (mnemonic)

where mnemonic is the Prime mnemonic shown for that character
in Table A-1. You can specify the mnemonic with either
uppercase or lowercase characters. Some characters have more
than one mnemonic; you may use any one of these. In the
table, the alternatives are separated by a slash character (/).
For example:

'A string'\(FF) 'with a form feed in it'
The compiler interprets the above example as a single character
string.
You can specify certain frequently used nonprinting characters
as

\(abbreviation)

where abbreviation is one of the following:

A-3 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Abbreviation Meaning

Backspace
Escape

Form feed

Line feed

New line
Carriage return
Horizontal tab
Vertical tab

<Hm=zMtmmw

For example:
'A string"\F'with a form feed in it'
4. You can specify control characters as
\"character

where “character is listed under "Graphic" in Table A-1. For
example:

'A string'\"L'with a form feed in it'
A character specified with a backslash (that is, with notation 2, 3, or
4)
@ Must appear outside quotation marks
® Specifies a character string of length 1
® Can be specified by itself, or with one or more additional
backslash-notation characters, or juxtaposed with one or more
quoted character strings.
Spaces between the Prime ECS character specification and the character

string are not significant, but there must be no spaces within the
character specification itself.

Program Example

The following program example writes a string that is specified by
Prime ECS syntax:

Fourth Edition, Update 2 A4

.

PRIME EXTENDED CHARACTER SET

PROGRAM ECS_STRING
CHBARACTER*12 STRING

STRING = \(CR) 'HELLO' \n 'THERE'
PRINT*, STRING

STOP

END

This program produces the following output:

HELLO
THERE
*k%% GTOP

SPECIAL MEANINGS OF PRIME ECS CHARACTERS

PRIMDS, or an applications program running on PRIMOS, may interpret
some Prime ECS characters in a special way. For example, PRIMOS
interprets "P as a process interrupt. ED, the Editor, interprets the
backslash (\) as a logical tab. If you wish to make use of the Prime
ECS backslash character in a file you are editing with ED, you must
define another character as your logical tab.

For a detailed description of how PRIMOS interprets the following Prime
ECS characters, see the discussion in the Prime User's Guide of special
terminal keys and special characters: ~\ " 2?2 P S Q _ and ;.

F77 PROGRAMMING CONSIDERATIONS

Remember that identifiers and program names may contain only letters,
numbers, and the dollar sign and underscore characters ($ and _).
These characters form a subset of the ASCII-7 character set,

Character strings, however, can contain any character in Prime ECS.
Such strings can be declared as constants, written, read, or assigned
to CHARACTER variables,

You can use notations 2, 3, and 4, described above, in any quoted
string in your program. Thus, you can use these rules in constant
declarations, assignment, and write or print statements.,

You cannot use notations 2, 3, and 4 in identifiers or in terminal or
file input. Therefore, if your temminal does not support Prime ECS,
you can enter as terminal input only those characters with decimal
values greater than 127 (octal values greater than 177).

A-5 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

The new characters in Prime ECS, decimal values 000 through 127 (octal
values 000 through 177) specified with notations 2, 3, and 4 above,
cannot be juxtaposed with Hollerith-style constants. They may not be
used in FORMAT statements, or used in runtime formats.

PRIME EXTENDED CHARACTER SET TABLE

Table A-1 contains all of the Prime ECS characters, arranged in
ascending order. This order provides both the collating sequence and
the way that comparisons are done for character strings. For each
character, the table includes the graphic, the mnemonic, the
description, and the binary, decimal, hexadecimal, and octal values. A
blank entry indicates that the particular item does not apply to this
character. The graphics for control characters are specified as
“character; for example, "P represents the character produced when you
type P while holding the control key down.

Characters with decimal values from 000 to 031 and from 128 to 159 are
control characters.

Characters with decimal values from 032 to 127 and from 160 to 255 are
graphic characters.

The pre-Revision 21.0 character set consists of the characters with
decimal values 128 through 255 (octal values 200 through 377). The
characters added at Revision 21.0 all have decimal values less than 128
(octal values less than 200).

Fourth Edition, Update 2 A-6

PRIME EXTENDED CHARACTER SET

Table A-1
Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

RES1 Reserved for future 0000 0000 000 00 000
standardization

RES2 Reserved for future 0000 0001 001 01 001
standardization

RES3 Reserved for tuture 0000 0010 002 02 002
standardization

RES4 Reserved for future 0000 0011 003 03 003
standardization

IND Index 0000 0100 004 04 004

NEL Next line 0000 0101 005 05 005

SSA Start of selected area 0000 0110 006 06 006

ESA End of selected area 0000 0111 007 07 007

HTS Horizontal tabulation set 0000 1000 008 08 010

HTJ Horizontal tab with 0000 1001 009 09 011
justify

VTS Vertical tabulation set 00001010 010 0A 012

PLD Partial line down 0000 1011 011 0B 013

PLU Partial line up 0000 1100 012 oC 014

Ri Reverse index 00001101 013 oD 015

882 Single shift 2 00001110 014 0OE 016

SS3 Single shift 3 0000 1111 015 OF 017

DCS Device control string 0001 0000 0186 10 020

PU1 Private use 1 0001 0001 017 11 021

PU2 Private use 2 0001 0010 018 12 022

STS Set transmission state 0001 0011 019 13 023

CCH Cancel character 0001 0100 020 14 024

MW Message waiting 0001 0101 021 15 025

SPA Start of protected area 0001 0110 022 16 026

EPA End of protected area 0001 0111 023 17 027

RESS Reserved for future 0001 1000 024 18 030
standardization

RES6E Reserved for future 0001 1001 025 19 031
standardization

RES7 Reserved for future 0001 1010 026 1A 032
standardization

Csli Control sequence 00011011 027 1B 033
introducer

ST String terminator 0001 1100 028 1iC 034

0sC Operating system 0001 1101 029 1D 035
command

PM Privacy message 0001 1110 030 1E 036

A-7 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Table A-1 (Continued)
Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal
APC Application program 0001 1111 031 1F 037
command
NBSP No-break space 0010 0000 032 20 040
i INVE Inverted exclamation 0010 0001 033 21 041
mark
¢ CENT Cent sign 0010 0010 034 22 042
£ PND Pound sign 0010 0011 035 23 043
0! CURR Currency sign 00100100 036 24 044
¥ YEN Yen sign 00100101 037 25 045
: BBAR Broken bar 00100110 038 26 046
§ SECT Section sign 00100111 039 27 047
- DIA Diaeresis, umlaut 0010 1000 040 28 050
© COPY Copyright sign 0010 1001 041 29 051
2 FOI Feminine ordinal 0010 1010 042 2A 052
indicator
« LAQM Left angle quotation 0010 1011 043 2B 053
mark
- NOT Not sign 00101100 044 2C 054
SHY Soft hyphen 0010 1101 045 2D 055
® ™ Registered trademark 0010 1110 046 2E 056
sign
- MACN Macron 0010 1111 047 2F 057
o DEGR Degree sign 0011 0000 048 30 060
* PLMI Plus/minus sign 0011 0001 049 31 061
z SPSs2 Superscript two 0011 0010 050 32 062
3 SPS3 Superscript three 0011 0011 051 33 063
‘ AAC Acute accent 0011 0100 052 34 064
K LCMU Lowercase Greek letter 0011 0101 053 35 065
K, micro sign
A PARA Paragraph sign, Pilgrow 00110110 054 36 066
sign
. MIDD Middle dot 0011 0111 055 37 067
R CED Cedilla 0011 1000 056 38 070
! SPS1 Superscript one 0011 1001 057 39 071
) MOI Masculine ordinal 00111010 058 3A 072
indicator
» RAQM Right angle quotation 00111011 059 3B 073
mark
a FR14 Common fraction 0011 1100 060 3c 074
one-quarter

Fourth Edition, Update 2 A-8

PRIME EXTENDED CHARACTER SET

Table A-1 (Continued)
Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal
/2 FR12 Common fraction 0011 1101 061 3D 075
one-half
Y4 FR34 Common fraction 00111110 062 3E 076
three-quarters
é INVQ Inverted question mark 0011 1111 063 3F 077
A UCAG Uppercase A with grave 0100 0000 064 40 100
accent
A UCAA Uppercase A with acute 0100 0001 065 41 101
accent
A UCAC Uppercase A with 01000010 066 42 102
circumflex
A UCAT Uppercase A with tilde 01000011 067 43 103
A UCAD Uppercase A with 0100 0100 068 44 104
diaeresis
A UCAR Uppercase A with ring 01000101 069 45 105
above
Ja s UCAE Uppercase diphthong 01000110 070 46 106
A
¢ UCCC Uppercase C with 01000111 071 47 107
cedilla
E UCEG Uppercase E with grave 0100 1000 072 48 110
accent
E UCEA Uppercase E with acute 0100 1001 073 49 111
accent
E UCEC Uppercase E with 0100 1010 074 4A 112
circumflex
E UCED Uppercase E with 0100 1011 075 4B 113
diaeresis
[UCIG Uppercase | with grave 0100 1100 076 4C 114
accent
i UCIA Uppercase | with acute 0100 1101 077 4D 115
accent
i ucCIC Uppercase | with 01001110 078 4E 116
circumflex
i UCID Uppercase | with 0100 1111 079 4F 117
diaeresis
b UETH Uppercase Icelandic 0101 0000 080 50 120
letter Eth
ISJ UCNT Uppercase N with tilde 0101 0001 081 51 121
O ucoaG Uppercase O with grave 0101 0010 082 52 122
) accent
@] UCOA Uppercase O with acute 0101 0011 083 53 123
accent

A-9 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Table A-1 (Continued)
Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

o) ucocC Uppercase O with 01010100 084 54 124
circumflex

0 uCoT Uppercase O with tilde 0101 0101 085 55 125

0 UcoD Uppercase O with 0101 0110 086 56 126
diaeresis

X MULT Multiplication sign used 0101 0111 087 57 127
in mathematics

%) ucooO Uppercase O with 0101 1000 088 58 130
oblique line

V] UCuG Uppercase U with grave 0101 1001 089 59 131
accent

0 UCUA Uppercase U with acute 01011010 090 5A 132
accent

0 UucucC Uppercase U with 0101 1011 091 5B 133
circumflex

U UuCubD Uppercase U with 0101 1100 092 5C 134
diaeresis

Y UCYA Uppercase Y with acute 0101 1101 093 5D 135
accent

p UTHN Uppercase Icelandic 01011110 094 5E 136
letter Thorn

f3 LGSS Lowercase German 0101 1111 095 5F 137
letter double s

a LCAG Lowercase a with grave 0110 0000 096 60 140
accent

a LCAA Lowercase a with acute 0110 0001 097 61 141
accent

a LCAC Lowercase a with 01100010 098 62 142
circumflex

a LCAT Lowercase a with tilde 01100011 099 63 143

a LCAD Lowercase a with 01100100 100 64 144
diaeresis

a LCAR Lowercase a with ring 01100101 101 65 145
above

® LCAE Lowercase diphthong ae 01100110 102 66 146

¢ LCCC Lowercase ¢ with cedilla 01100111 103 67 147

e LCEG Lowercase e with grave 0110 1000 104 68 150
accent

e LCEA Lowercase e with acute 0110 1001 105 69 151
accent

e LCEC Lowercase e with 01101010 106 6A 152
circumflex

Fourth Edition, Update 2 A-10

PRIME EXTENDED CHARACTER SET

Table A-1 (Continued)
Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

e LCED Lowercase e with 01101011 107 6B 153
diaeresis

i LCIG Lowercase i with grave 01101100 108 6C 154
accent

1 LCIA Lowercase i with acute 0110 1101 109 6D 155
accent

1 LCIC Lowercase i with 01101110 110 6E 156
circumflex

1 LCID Lowercase i with 01101111 111 6F 157
diaeresis

o) LETH Lowercase Icelandic 0111 0000 112 70 160
letter Eth

n LCNT Lowercase n with tilde 0111 0001 113 71 161

0 LCOG Lowercase o with grave 0111 0010 114 72 162
accent

0 LCOA Lowercase o with acute 01110011 115 73 163
accent

0 LCOC Lowercase o with 01110100 116 74 164
circumflex

0 LCOT Lowercase o with tilde 01110101 117 75 165

0 LCOD Lowercase o with 01110110 118 76 166
diaeresis

= DIV Division sign used in 0111 0111 119 77 167
mathematics

[} LCOO Lowercase o with 0111 1000 120 78 170
oblique line

u LCUG Lowercase u with grave 01111001 - 121 79 171
accent

a LCUA Lowercase u with acute 01111010 122 7A 172
accent

a LCuC Lowercase u with 01111011 123 7B 173
circumflex

u LCUD Lowercase u with 01111100 124 7C 174
diaeresis

y LCYA Lowercase y with acute 0111 1101 125 7D 175
accent

b LTHN Lowercase Icelandic 01111110 126 7E 176
letter Thorn

y LCYD Lowercase y with 0111 1111 127 7F 177
diaeresis

&1 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Table A-1 (Continued)
Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal
NUL Null 1000 0000 128 80 200
“A SOH/TCA Start of heading 1000 0001 129 81 201
"B STX/TC2 Start of text 1000 0010 130 82 202
"C ETX/TC3 End of text 1000 0011 131 83 203
"D EOT/TC4 End of transmission 1000 0100 132 84 204
“E ENQ/TC5 Enquiry 1000 0101 133 85 205
“F ACK/TC6 Acknowledge 10000110 134 86 206
G BEL Bell 1000 0111 135 87 207
“H BS/FEOQ Backspace 1000 1000 136 88 210
1 HT/FE1 Horizontal tab 1000 1001 137 89 211
*J LF/NL/FE2 Line feed 1000 1010 138 8A 212
K VT/FE3 Vertical tab 1000 1011 139 8B 213
“L FF/FE4 Form feed 10001100 140 8C 214
M CR/FES Carriage return 1000 1101 141 8D 215
“N SO/LSH Shift out 10001110 142 8E 216
0 SIFLSO Shiftin 1000 1111 143 8F 217
P DLE/TC7 Data link escape 1001 0000 144 a0 220
“Q DC1/XON Device control 1 1001 0001 145 9 221
"R DC2 Device control 2 1001 0010 146 92 222
"8 DC3/XOFF Device control 3 1001 0011 147 93 223
T DC4 Device control 4 1001 0100 148 94 224
v NAK/TC8 Negative acknowledge 1001 0101 149 95 225
v SYN/TC9 Synchronous idle 1001 0110 150 96 226
"W ETB/TC10 End of transmission 1001 0111 151 97 227

block

X CAN Cancel 1001 1000 152 98 230
Y EM End of medium 1001 1001 153 99 231
~Z suB Substitute 1001 1010 154 9A 232
“l ESC Escape 1001 1011 155 9B 233
“\ FS/1S4 File separator 1001 1100 156 9C 234
| GS/1S3 Group separator 1001 1101 157 9D 235
- RS/1S2 Record separator 1001 1110 158 9E 236
. us/Is1 Unit separator 1001 1111 159 9F 237
SP Space 1010 0000 160 AD 240
! Exclamation mark 1010 0001 161 Al 241
" Quotation mark 10100010 162 A2 242
NUMB Number sign 1010 0011 163 A3 243
$ DOLR Dollar sign 10100100 164 A4 244
% Percent sign 10100101 165 AbB 245
& Ampersand 10100110 166 A6 246

Fourth Edition, Update 2

A-12

- PRIME EXTENDED CHARACTER SET

Table A-1 (Continued)
Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal
? Apostrophe 1010 0111 167 A7 247

(Left parenthesis 1010 1000 168 A8 250

) Right parenthesis 1010 1001 169 A9 251

* Asterisk 10101010 170 AA 252

+ Plus sign 1010 1011 171 AB 253

, Comma 10101100 172 AC 254

& = Minus sign 1010 1101 173 AD 255
: Period 10101110 174 AE 256

/ Slash 1010 1111 175 AF 257

0 Zero 1011 0000 176 BO 260

1 One 1011 0001 177 B1 261

2 Two 1011 0010 178 B2 262

3 Three 1011 0011 179 B3 263

4 Four 1011 0100 180 B4 264

5 Five 1011 0101 181 B5 265

. 6 Six 10110110 182 B6 266
7 Seven 1011 0111 183 B7 267

8 Eight 1011 1000 184 B8 270

9 Nine 1011 1001 185 B9 271

= Colon 10111010 186 BA 272

: Semicolon 1011 1011 187 BB 273

< Less than sign 1011 1100 188 BC 274

= Equal sign 1011 1101 189 BD 275

> Greater than sign 1011 1110 190 BE 276
. ? Question mark 1011 1111 191 BF 277
@ AT Commercial at sign 1100 0000 192 Co 300

A Uppercase A 1100 0001 193 C1 301

B Uppercase B 1100 0010 194 cz2 302

C Uppercase C 11000011 195 C3 303

D Uppercase D 11000100 196 C4 304

E Uppercase E 1100 0101 197 C5 305

F Uppercase F 11000110 198 C6 306

G Uppercase G 11000111 199 C7 307

H Uppercase H 1100 1000 200 C8 310

| Uppercase | 1100 1001 201 C9 311

J Uppercase J 1100 1010 202 CA 312

K Uppercase K 1100 1011 203 cB 313

L Uppercase L 1100 1100 204 CC 314

M Uppercase M 1100 1101 205 CDh 315

- N Uppercase N 11001110 206 CE 316

A-13 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Table A-1 (Continued)
Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal
0] Uppercase O 1100 1111 207 CF 317
P Uppercase P 1101 0000 208 Do 320
Q Uppercase Q 1101 0001 209 D1 321
R Uppercase R 1101 0010 210 D2 322
S Uppercase S 1101 0011 211 D3 323
T Uppercase T 1101 0100 212 D4 324
u Uppercase U 1101 0101 213 D5 325
\ Uppercase V 1101 0110 214 D6 326
w Uppercase W 1101 0111 215 D7 327
X Uppercase X 1101 1000 216 D8 330
Y Uppercase Y 1101 1001 217 D9 331
z Uppercase Z 1101 1010 218 DA 332
[LBKT Left bracket 1101 1011 219 DB 333
\ REVS Reverse slash, 1101 1100 220 DC 334

backslash
] RBKT Right bracket 1101 1101 221 DD 335
8 CFLX Circumflex 1101 1110 222 DE 336
_ Underline, underscore 1101 1111 223 DF 337
> GRAV Left single quote, grave 1110 0000 224 EO 340
accent

a Lowercase a 11100001 225 E1 341
b Lowercase b 1110 0010 226 E2 342
c Lowercase ¢ 1110 0011 227 E3 343
d Lowercase d 11100100 228 E4 344
e Lowercase e 11100101 229 E5 345
f Lowercase f 11100110 230 EB 346
g Lowercase g 11100111 231 E7 347
h Lowercase h 1110 1000 232 E8 350
i Lowercase i 1110 1001 233 E9 351
i Lowercase | 11101010 234 EA 352
k Lowercase k 1110 1011 235 EB 353
| Lowercase | 11101100 236 EC 354
m Lowercase m 11101101 237 ED 355
n Lowercase n 11101110 238 EE 356
0 Lowercase 0 11101111 239 EF 357
p Lowercase p 1111 0000 240 FO 360
q Lowercase q 1111 0001 241 F1 361
r Lowercase r 1111 0010 242 F2 362
s Lowercase s 1111 0011 243 F3 363
t Lowercase t 1111 0100 244 F4 364

Fourth Edition, Update 2

A-14

— PRIME EXTENDED CHARACTER SET

Table A-1 (Continued)
Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal
u Lowercase u 11110101 245 F5 365
v Lowercase v 11110110 246 F6 366
w Lowercase w 11110111 247 F7 367
X Lowercase x 1111 1000 248 F8 370
y Lowercase y 1111 1001 249 F9 371
z Lowercase z 11111010 250 FA 372
- { LBCE Left brace 11111011 251 FB 373
| VERT Vertical line 11111100 252 FC 374
} RBCE Right brace 11111101 253 FD 375
- TIL Tilde 11111110 254 FE 376
DEL Delete 1111 1111 255 FF 377

N

A-15 Fourth Edition, Update 2

F77 Programming

Examples

SAMPLE PROGRAM #1

SCOURCE FILE: <PUPS>DOGS>SAMPLEL.F77

(OMPILED ON: 850212 AT: 14:01 BY: F77 REV, 19.4

Options selected: SAMPLE -LISTING

Optimization note: Currently "-OPTimize" means "-OPTimize 2",
"_Full_OPTimize" means "-OPTimize 4", and default is "-OPTimize 2".

Options used(* follows those that are not default):
64V Allow PREconnection No BIG Binary No DClvar No _DeBuG No DOl DYnm
No ERRList ERRTty No EXPlist No FRN No FIN Entry INTL Listing* LOGL MAp
No OFFset OPTimize(2) No_OverFlow No PBECB No PRODuction No_RAnge
SIlent(-1) TIME No STATistics No_Store Owner Field UPcase No_XRef

PROGRAM DEMD /*PROGRAM STATEMENT*/

Kk dhrrhE A AR AR RRREFRRRRARERR R R * T dhdhhdhhrnkdh Rk rkkhhhhhhbhbdkd

SAMPL.E PROGRAM TO DEMONSTRATE THE VARIOUS FEATURES OF
FORTRAN 77, BND A TYPICAL F77 COMPILER SCQURCE LISTING.

* % % o ¥ *

LoOodALds WP H
¥ ¥ % % F* * (O

10 khkhkhkhkhkkhhkkhkhhkhhkkhkkhkrkkkhkkhdhkkhdikhkrrdhddhkhdrhhhhhhhhhrhirik

11 C

12 £

13 C***** DARAMETER STATEMENTS

14 C

15 INTEGER ONE, FOUR,TEN, FORTY /* DCL TYPE BEFORE USE */

B-1 Fourth Edition

FORTRAN 77 Reference Guide

PARAMETER ONE = 1,

» FOUR = 4,
* TEN = 10,
* FORTY=TEN*FCUR /* NOTE USE OF EXPRESSION */

C
C*%*** THE CHARACTER DATA TYPE IS NEW TO FORTRAN 77.
C
CHARACTER*4 FILE
CHARACTER*12 FNAME, FORM*8
CHARACTER*80 BUFFER /*DEFINE INPUT BUFFER*/
DIMENSION IN_ARRAY (80) /* DEFINE INTEGER ARRAY*/
C
Ck*x%%* ARRAY DCL'S, USING LOWER BCUNDS 2AND 7 DIMENSIONS
C
DIMENSION B(1, 2, 3, 4, 5, 6, 7)
CHARACTER C(0:FOUR, TEN)*5 /* CHAR ARRAYS ALIOWED */
/* NOTE USE OF PARAMETERS */
C (
Chidnk | ImICAL VPRIABLES HJ'IE *1, *2 2ND *4 FORMS.
Cx**%% |THESE ARE NOT EORTRAN 71, BUT ARE SUPTORTED FOR
CEPERE | CDMPATIBDLITY WI'H‘I IM. NDTE N&‘I’A INITIPLIZATIDN
Cx*%** |IN A TYPE STATEMENT, :

C
LOGICAL EXISTS, OPND
LOGICAL*1 LOG1
LOGICAL*2 10G2/.TRUE./, LOG2B
LOGICAL*4 LOGICALFOUR /* UP TO 32 CHAR NAMES */
C

CHxkx+ |QOMPLEX#16 IS NOT FORTRAN 77, BUT IS AN EXTENSION FOR
Cx¥*%%* (QOMPATIRILITY WITH IBM FORTRAN.
C s SR TR

'(DMPLEX*16 DOOMPVAR
C
Ck**%* USE OF DOUBLE PRECISION TYPE DECLARATION.
c

DOUBLE PRECISION D1, D2, D3, D4
c
Cx*%*% EXTERNAL, STATEMENT USED TO INSURE THAT AN EXTERNAL
Ck*¥¥% FUNCTION WILL BE USED INSTEAD OF THE INTRINSIC.
CH*%%* T (DULD ALSO BE USED TO INSURE THAT ANY FUNCTION
C¥*%%%* [SED WILL NOT BE MISINTERPRETED AS AN INTRINSIC EVEN
C***%%%* THOUGH SOME VENDOR MAY HAVE ADDED A FUNCTION OF THAT
Cx¥*%%%x NAME TO THE LIST OF INTRINSICS, ENHANCING FORTABILITY.
C

EXTERNAL IFIX
C
C**%*%* BEGINNING OF EXECUTABLE CODE. THE PURFOSE OF THIS
Cx¥*%%% ROUTINE IS TO OPEN SOME FILES, AND THEN CHECK
Ck*%%* THAT THE FILES WERE CORRECTLY OPENED. THIS DEMON-
C***%%* QTRATES SOME OF THE NEW I/0 FEATURES OF FORTRAN 77.
C

Fourth Edition B-2

e

F77 PROGRAMMING EXAMPLES

FILE = 'FILE' /* ASSIGN ASCII STRING TO CHAR VAR */
SOME_NUMBER = 64.2
C
Cx**x*% THIS IS THE MAIN LOOP
&
DO 10 I=1,SQRT(SOME_NUMBER)*8 /* REAL EXPR FOR DO PARM
FNAME = FILE//CHAR(I) /* CHAR CONCATENATION */
C
Ck**%* NEW OPEN STATEMENT WITH KEYWORDS.
C
OPEN (FILE = FNAME,
* UNIT = I,
* STATUS = 'UNKNOWN',
* ACCESS = 'SEQUENTIAL',
* ERR = 100)
C
Ch**%* NEW INQUIRE STATEMENT
C
INQUIRE (UNIT = I,
* EXIST = EXISTS,
* OFENED = OPND,
* NAME = C(I+1,4), /* EXPRESSION IN ARRAY REF */
* ERR = 101)
C
C***%% AN EXAMPLE OF A BLOCK IF-THEN-ELSE
C
IF (EXISTS .AND. OPND) THEN
WRITE (1,%*) FNAME, ' EXISTS AND IS OPENED'
/* LIST DIRECTED I/0 WITH */
/* CHAR CQONSTANT */
ELSE
PRINT *, FNAME, ' NOT OPENED, NO ERROR RAISED'
/* NEW PRINT STATEMENT */
END IF
10 CONTINUE
G0 TO 1000
C

C**%%% END OF MAIN LOOP. ERROR ROUTINES FOLLOW.
c
100 WRITE (1, '(A, A, A, I3)')'ERROR ON OPEN OF ', FNAME,
* 'ON UNIT ', I
/* FORMAT EMBEDLED IN I/O STMT */
STOP 'ERROR'
101 CONTINUE
FORM = ' (a, 1) /* DEFINE FORMAT */
WRITE (1, FORM) 'ERROR ON INQUIRE ON UNIT ',I
/* CHAR VAR REPRESENTS FORMAT */

B-3 _ Fourth Edition

FORTRAN 77 Reference Guide

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

STOP 'ERROR'
C1000 INT_RANDOM = IFIX(3.1) /* USE EXTERNAL FUNCTION */
g***** THIS NEXT CALL DEI-DNSI’RATES THE ALTERNATE RETURN,
¢ CALL ALTRET (I, $5001, $5002)

INT_RANDOM = 0

GO TO 6000

5001 CONTINUE /* BLT RETURN #1 */
GO TO 6000

5002 CONTINUE /* BLT RETURN #2 */

INT_RANLOM = 2
C
Ck**** ANOTHER EXAMPLE OF THE BLOCK-IF, BUT WITH MULTIPLE
C***%% BRANCHES. ALSO, MJLTIPLE ENTRY FOINTS OF THE
C*¥**%*% SUBROUTINE MULTIN ARE USED.
o
6000 IF (INT_RANDOM .EQ. 0) THEN
CALL MULTIN (I, INT_RANDOM)
ELSE IF (INT_RANDOM .EQ. 1) THEN
CALL MULT1 (I)
ELSE IF (INT_RANDOM .EQ. 2) THEN
(ALL MULT2 (INT_RANDOM)
ELSE
INT_RANDOM = 1
END IF
Cc
Cx**** NEXT IS AN EXAMPLE OF INTERNAL FILES., FIRST, READ AN
Cr***% 80 CHAR RECORD INTO BUFFER. ASSUMING IT IS ALL
Cx¥%%% NUMBERS, IT CAN BE 'READ' INTERNALLY INTO ANOTHER
C***** TNTEGER VARIABLE, INTERNAL FILES HAVE THE SAME
C¥**%% PFUNCTIONALITY AS ENQODE/DECODE.
C
READ (5, '(AB0)') BUFFER
READ (UNIT=BUFFER, FMT='(80I1)') IN_ARRAY
c
Cx***%* THIS IS AN EXAMPLE OF GENERIC TYPING OF INTRINSICS.

Fourth Edition B-4

F77 PROGRAMMING EXAMPLES

153 C***** JIT IS NO LONGER NECESSARY TO USE DIFFERENT FUNCTION
154 C*#**** NAMES FOR THE SAME FUNCTION FOR DIFFERENT DATA TYPES.

155 C
156
157
158
159
160
161
162

D1
D2
D3

monn
= Wb
[te o T8 8]

.

/* DEFINE DOUBLE PREC VARS */

D4 =Dl + D2 + D3
SINGLE = 31.3134
SINGLE=SQRT (D1) /ABS(D2)+SQRT (D3) *SQRT (D4) /SORT (D_SINGLE)

END

EXTERNAL ENTRY FOINTS

ENTRY FOINT

DEMD

MAIN PROGRAM DEMD ON LINE 1

SYMBOL IC
NAME

10

100
1000
101
5001
5002
6000

A

ABS
ALTRET
B

7)
BUFFER
C

CHAR
D1

D2

D3

D4

PROGRAM UNIT LINE

STORAGE
CLASS

CONSTANT
OONSTANT
QONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
DYNAMIC
INTRINSIC
CONSTANT
DYNAMIC

DYNAMIC
DYNAMIC
INTRINSIC
DYNAMIC
DYNAMIC
DYNAMTC
DYNAMIC

SIZE LOC
(DEC) (OCT)

1320H 000054

10080H 002524

80C 026264

250C 026334

4H 026532

4H 026536

4H 026542

4H 026546
B-5

/* SINGLE PREC */

TYPE

ENTRY

ATTRIBUTES

EXECUTABLE LABEL, LINE 102
EXECUTABLE LABEL LINE 107
EXECUTABLE LABEL LINE 117
EXECUTABLE LABEL LINE 111
EXECUTABLE LABEL LINE 124
EXECUTABLE LABEL LINE 126
EXECUTABLE LABEL LINE 133

'REAL*4 DIMENSION(-5:5 6,0:9)

SUBROUTINE
REAL*4 DIMENSION(1,2,3,4,5,6,

CHARACTER*80
CHARACTER*5 DIMENSION(0:4,10)

REAL*S
REAL*8
REAL*8

REAL*8

Fourth Edition

FORTRAN 77 Reference Guide

DCOMPVAR DYNAMIC 8H 026552 -‘.GDMH.Ex*ls

D_SINGLE DYNAMIC 2H 026562 :

EXISTS DYNAMIC 2H 026564

FILE DYNAMIC 4aC 026566

FNAME DYNAMIC 12C 026570 CHARACTER*12

FORM DYNAMIC 8C 026576 CHARACTER*8

FORTY 2H INTEGER*4 NAMED CONSTANT 40
FOUR 2H (INTEGER*4 NAMED
QONSTANT 4 8, :

I DYNAMIC 2H 026602 INTBGER*4|

IFIX CONSTANT 'INTEGER*4 FUNCTION
INT_RANDOM DYNAMIC 2H 026604 INTEGER*4

IN_ARRAY DYNAMIC 160H 026606 | INTEGER*4 DIMENSION (80)
LOGL DYNAMIC 1C 027046 LOGICAL*1

LOG2 STATIC 1H 000030 INITIAL LOGICAL*2
LOG2B DYNAMIC 1H 000053 LOGICAL *2

LOGICALFOUR DYNAMIC 2H 027050 LOGICAL *4

MULTL CONSTANT SUBROUTINE

MJLT2 CONSTANT SUBROUTINE

MULTIN CONSTANT SUBROUTINE

ONE 2H 'INTEGER*4 NAMED CONSTANT 1
OPND DYNAMIC 2H 027052 , IOGIGAL*4

SINGLE DYNAMIC 2H 027054 REAL*4

SOME_NUMBER DYNAMIC 2H 027056 REAL*4

SORT INTRINSIC ‘

TEN 2H INTEGER*4 NAMED
QONST2NT 10

Fourth Edition B-6

163
164
165
166
167
168
169
170
174
172
173
174
175
176
177
178

* % % % ¥ ¥ OO

F77 PROGRAMMING EXAMPLES

kkkhkhkkkkkkkhkkkhrrrrddhhkhrrhdkrrdddhhrrd b hhbdkhkrridhdhd iy

THIS IS AN EXTERNAL FUNCTION OF THE SAME NAME AS THE
INTRINSIC IFIX, AND DOES THE SAME THING, SO AS TO
DEMONSTRATE THAT BY USING THE EXTERNAL STATEMENT ONE
SUBSTITUTE ONE'S OWN VERSION OF A FUNCTION,

* ¥ o N F* ¥

khkkkkhkkkrdkhkrrhhrrhkhdkhhkrdhhhhbhrdhhkhhhhkhhhhdddrdhhrdhhhrhhkhd

C
C
INTEGER FUNCTION IFIX(RVAR)
IFIX = RVAR
RETURN
END

EXTERNAL ENTRY POINTS

ENTRY POINT PROGRAM UNIT LINE TYFE

IFIX

175 INTEGER*4 FUNCTION

FUNCTION IFIX ON LINE 175

SYMBOL IC STORAGE SIZE 10C ATTRIBUTES
NAME CLASS (DEC) (OCT)
RVAR DUMMY ARG 2H S 1 REAL *4

B-7 Fourth Edition

FORTRAN 77 Reference Guide

C
179 C
180 C
181 R e d 3 S 2 T T T T T L T L B L T R I O I T SRS S)
182+ *
183 * THIS SUBROUTINE DEMONSTATES ALTERNATE RETURNS. *
184 * *
185 e L s T L R L R R et L L E L L Ll L L ey
186 C
187 C
188 SUBRCUTINE ALTRET (I, *, *)
189 RETURN I /* IF I = 1, RETURNS TO 5001 */
190 /* IF I = 2, RETURNS TO 5002 */
191 /* OTHERVISE, RETURNS NORMALLY */
192 END

EXTERNAL ENTRY FOINTS

ENTRY POINT PROGRAM UNIT
ALTRET

SUBROUTINE ALTRET ON LINE 188
SYMBOLIC STORAGE SIZE
NAME CLASS (DEC)
I DUMMY ARG 2H
Fourth Edition B-8

LINE
188

LOC
(OCT)

FOS 1

SUBROUTINE

ATTRIBUTES

'INTEGER*4

F77 PROGRAMMING EXAMPLES

C
193 C
194 C
195 dEkkkdkdkkkkkkkkkdkd kR Rk Rk Rk kb kbR kR Rk Rk Rk Rk kokk
196 * *
197 * THIS SUBROUTINE IS AN EXAMPLE OF A SUBROUTINE WITH %
198 * MULTIPLE ENTRY ROINTS. %
189 % *
000 hkkkkkkkkkkkkkdkkkkkkkikkkkkkkkkkkkk bk Rk kkdkdook bk kk kb bk
201 C
202 C
203 SUBROUTINE MULTIN (I, INT_RANDOM)
206 C
205 I=0
206 INT _RANDOM = 13
207 RETURN
208 C

209 Ck*%%* SECONDARY ENTRY POINT. NOTE THAT THE ARG LIST NEED
210 C***%% NOT MATCH THAT AT THE HEADER STATEMENT.
211 C

212 ENTRY MULTL (I)

213 I=15

214 RETURN

215 C

216 CH*%%%% NEXT ENTRY POINT

217 C

218 ENTRY MULT2 (INT RANDOM)
219 INT RANDOM = INT RANDOM**2
220 RETURN

221 END

EXTERNAL ENTRY FOINTS

ENTRY POINT PROGRAM UNIT LINE TYPE

MULT1 MULTIN 212 SUBRCUTINE
MOLT2 MULTIN 218 SUBRCUTINE
MILTIN 203 SUBROUTINE

SUBROUTINE MULTIN ON LINE 203

SYMBOL.IC STORAGE SIZE 10C ATTRIBUTES
NAME CLASS (DEC) (OCT)

I DUMMY ARG 2H ROS 1 TNTEGER*4
INT_RANDOM DUMMY ARG 2H -V- INTEGER*4

B9 Fourth Edition

FORTRAN 77 Reference Guide —

SAMPLE PROGRAM #2

SCURCE FILE: <PUPS>DOGS>SAMFLE2,.F77

COMPTLED ON: 850212 AT: 14:01 BY: F77 REV. 19.4

Options selected: SAMPLE2 -LISTING

Optimization note: Currently "-OPTimize" means "-OPTimize 2",
"-Full_OPTimize" means "-OPTimize 4", and default is "-OPTimize 2".

Options used(* follows those that are not default):
64V Allow_PREconnection No BIG Binary No DClvar No_DeBuG No DO1 D¥Ynm
No_ERRList ERRTty No_EXPlist No FRN No_FTN_Entry INTL Listing* LOGL MAp
No_OFFset OPTimize(2) No _OverFlow No_PBECB No PRODuction No_RAnge
STIlent{-1) TIME No_STATistics No Store Owner Field UPcase No XRef

iole ——
2 ** y
3 * *

4 * *

5 * THIS SAMPLE PROGRAM DEMONSTRATES THE USE OF QUAD FLOATING *

6 * FPOINT ARITHMETIC, A NEW PRIME FEATURE. PROGRAMS THAT USE *

7 * REAL*16 DATA TYPE CAN ONLY BE EXECUTED ON PRIME MACHINES *

8 * THAT SUPFORT QUAD PRECISION (REV, 19.2 AND HIGHER). :

9 *
10 * THE SUBPROGRAM EXAMINES 3 REAL VALUES PASSED FROM THE *

11 * MAIN PROGRAM AND RETURNS THAT VALUE WHICH HAS THE LARGEST *

12 * ABSOLUTE VALUE. * =
13 * *)

14 bRk Rk R e e e R R R A A T AR S S

5 IE
16 C***** QUSE OF QUAD PRECISION TYPE DECLARATION

7
18 REAL*16 Ql, 02, Q3
19 ¢
20 el = 2,201 /* DEFINE REAL*16 VARS */
21 02 = 2.3302
22 M3 = 6.900 o
23, €
24 READ*, Ql, 02, O3
.25 C ? ! i :
26 CALL BIG(QL, 02, Q3, ANS) /* CALL SUBROUTINE BIG */
o7 PRINT*, ANS
28 END

Fourth Edition B-10

F77 PROGRAMMING EXAMPLES

ENTRY FOINT PROGRAM UNIT LINE TYPE

.MATIN. 18 ENTRY

MATN PROGRAM .MAIN, ON LINE 18

SYMBCL.IC STORAGE SIZE IOC ATTRTBUTES

NAME CLASS (DEC) (OCT)

ANS DYNAMIC 2H 000054 REAL*4

BIG CONSTANT SUBROUTINE

(o)} DYNAMIC 8H 000056 REAL.*16

02 DYNAMIC 8H 000066 REAL*16

o3 DYNAMIC 8H 000076 REAL*16

C
205 5C
30 EREEERRREEkEEEEEEARRREAAERRRRFFEERR AR IR Rk Rk kd R fk ko ko gk ok
Thh *
32 * THE SUBROUTINE BIG USES THE INTRINSIC FUNCTION QABS TO t
33 * FIND WHICH VALUE HAS THE LARGEST MAGNITUDE AND RETURNS &
34 * THE RESULT TO THE MAIN PROGRAM. o
35 * *

36 kkERkEREAFA TR LI IEER AT RREEE AT IRRA LRI RRARAR K AR A TR RTR ARk xT R T hER
S

38 SUBRCUTINE BIG(X, Y, Z, BIQABS)
39 REAL*16 X, Y, Z, BIGABS

40 IF (QABS(X).GT.QABS(Y)) THEN

41 IF (QABS(X).GT, (Z)) THEN

42 BIOABS = X

43 ELSE

44 BIQABS = Z

45 END IF

46 ELSE '

47 IF (QABS(Y).GT.QABS(Z)) THEN
48 BIQABS = Y '
49 ELSE

50 BIQABS = Z

51 END IF

52 END IF

53 RETURN

54 END

B-11 Fourth Edition

FORTRAN 77 Reference Guide

Fourth Edition

B=12

I I

Converting FTIN
Programs to F77

The techniques required for oonverting FIN programs to F77 are
described in this appendix.

The simplicity of converting FIN programs to F77 results from two
factors:

® The designers of FIN used preliminary documents released by ANSI
during the development of FORTRAN 77. The information in these
documents was used to make FIN's extensions to FORTRAN 66
identical to those of the future FORTRAN 77 wherever this could
be accomplished without violating the FORTRAN 66 standard.

@ F77 includes all FIN constructs, except the obsolete TRACE
statement, that are absent from but compatible with FORTRAN 77.

The result is that many FIN program units can be compiled in F77 with
no changes. Most of the other programs can be converted with only
minor changes.

The program unit which cannot easily be converted to F77 can usually be
left in FIN form and called by other units that are written in F77.
See USING AN FTN PROGRAM UNIT IN AN F77 PROGRAM,

c-1 Fourth Edition

FORTRAN 77 Reference Guide

PROGRAM (ONVERSION

Any project converting FIN programs to F77 should have available:
e This guide

@ The Prime User's Guide

@ The FORTRAN Reference Guide

@ The ANSI Standard for FORTRAN 77

Conversion of a program to F77 need not be an all or none process. Due
to the similarity of FIN and F77, each unit of an FIN program can be
dealt with separately when the program as a whole is converted.

The first step in converting an FIN program unit to F77 is to compile
it in F77 and see what, if any, error messages result. Due to the
detailed and prescriptive information given by an F77 error message,
the messages produced should give an assessement of the changes needed.

The second step is to check the FIN program unit for constructs that
are common to and syntactically the same in FIN and F77, and therefore
generate no syntax errors, but which have different requirements or
results in the two languages due to differences between the ANSI
standards. Such constructs are called "optiomally acceptable FIN
constructs" and "reimplemented FIN constructs." These terms are
defined, and all such constructs are described, under PRODUCING AN
F77-COMPATIBLE PROGRAM UNIT,

The first and/or second steps should be iterated until the program unit
compiles correctly with all optiomally acceptable and reimplemented
constructs dealt with as necessary.

The third step is a thorough check of the oonverted program unit.
Before it is accepted as correct, it should pass the same tests it was
required to pass before being accepted in its original version,

Caution

The fact that a program unit compiles without error in F77 does
not mean it will produce the same results in F77 that it did in
FIN. Identical results can be achieved only if all optiomally
acceptable and reimplemented constructs have been correctly
dealt with,

Fourth Edition c-2

CONVERTING FIN PROGRAMS TO F77

DEGREES OF PROGRAM UNIT CONVERSION

Conversion of a program unit to F77 is not an all or none matter.
Three degrees of oonversion of an FIN program unit can be
distinguished:

e The unit may be left in FIN, but may reference and be called by
other units that are in F77. This conversion is contextual.
The unit per se remains an FIN program unit.

e The unit may be recompiled in F77, but retain certain optionally
acceptable FIN constructs that violate the FORTRAN 77 standard.
The F77 compiler will compile them correctly only if it is
invoked with appropriate options, as described below. A program

wit of this type is termed an F77-compatible program unit.

e The unit may be completely converted to standard-conforming F77.
It is then termed an F77-standard program unit.

There is no need for all units of a converted program to be converted
to the same degree.

USING AN FTN PROGRAM UNIT IN AN F77 PROGRAM

An FIN program unit may reference and be referenced by an F77 program
unit. See the comments in Chapter 1 under INTERFACE TO OTHER
LANGUAGES. The following additional restrictions apply.

e An F77 program unit cannot pass a subprogram as an argument to
an FIN program unit, nor can an FIN unit pass a subprogram to an
F77 unit.

® An F77 function returning a COMPLEX*8 value cannot be referenced
by an FIN program unit, nor can an FIN function returning a
COMPLEX*8 value be referenced by an F77 program unit.

e Data of types that exist in F77 but not in FIN cannot be passed
as arguments.

@ An F77 subroutine cannot use the F77 alternate return mechanism
(that is, RETURN (expression)) if it will be called by an FIN
program unit., The F77 subroutine must use the alternate
mechanism (that is, GO TO (dummy variable)).

e F77 cannot pass unaligned arguments to FIN program units.

Any program unit for which no modifications to use the added power of
F77 are contemplated, and which can be invoked by an F77 program unit,
can be left in FIN indefinitely. No F77 program unit can reference or
be referenced by any program unit that was compiled in R-mode. An FTN
unit in R-mode must be recompiled into V-mode before it can become part
of an F77 program. A few rarely used R-mode FIN constructs are not
available in V-mode. See Unsupported FIN Constructs.

c-3 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

PRODUCING AN F77-COMPATIBLE PROGRAM UNIT

The information needed to oconvert an FIN program unit to an
F77-compatible program unit falls into four categories:

® Constructs that are compiled differently by the FIN and F77
compilers, but which will be compiled in the FIN manner by the
F77 compiler if the compiler is invoked with appropriate options
(optionally acceptable FTN constructs).

® Constructs that are compiled differently by the FIN and F77
compilers, and which cannot be compiled in the FIN manner by the
F77 compiler (reimplemented FTN constructs).

® Constructs that exist in FIN but not in F77 (unsupported FIN
constructs).

e Constructs that exist in FIN and are not part of FORTRAN 77, but
have been added to F77 for compatibility (obsolete FIN
constructs).

Optionally Acceptable FIN Constructs

The various compiler options mentioned below are fully defined in
Chapter 9.

The optionally acceptable FIN constructs, and their F77 versions, are
as follows. 1In each case, the F77 version conforms to the FORTRAN 77
standard, while the FTN version does not.

FIN DO Loops: An FIN DO loop always executes once, and permmits
extended DO ranges. An F77 DO loop can execute zero times and forbids
extended DO ranges. ‘'This difference can be insidious because all FIN
DO loops are syntactically correct in F77. There are also other
differences, but these do not affect program unit conversion. The two
types of loop are fully compared under the DO Statement in Chapter 6.

To cause the F77 compiler to produce FIN-type DO loops, invoke it with
the -DO1 option.

Short Integers: In FIN, the type INTEGER without a *(1length)
Specification is synonymous with INTEGER*2 (short integer), and integer
constants are stored as INTEGER*2 unless they are too big or contain
too many digits. (See Chapter 2.) In F77, INTEGER is synonymous with
INTEGER*4 (long integer) and integer constants are stored as INTEGER*4.

To cause the F77 compiler to produce short integers in the manner of
the FIN compiler, invoke it with the —INTS option.

Fourth Edition, Update 2 -4

QONVERTING FIN PROGRAMS TO F77

The FIN compiler has the —INTL option, which causes it to treat integer
data in the manner described for F77. A program unit that was normally
compiled with —INTL in FIN requires no special action regarding integer
data when converted to F77.

Short Logical Data: In FIN, logical data always occupies two bytes
(IOGICAL*2); there is no LOGICAL*4 type. 1In F77, the type LOGICAL
without a *(length) specification is synonymous with LOGICAL*4, and
logical constants are stored as LOGICAL*4.

To cause the F77 compiler to produce short logical data (except where
[OGICAL*4 has been explicitly specified) invoke it with the -LOGS
option.,

Static Storage Default: Both the FIN and F77 compilers offer the
-DYNM/-SAVE option. In FIN, the default is —SAVE, so that all data is
static. In F77, the default is -DYNM, so that all data is dynamic
unless explicitly declared static. This dynamic storage property is
required by the FORTRAN 77 standard.

If the correct operation of an FIN program unit is dependent on some or
all of its data being static by default, the —SAVE option must be given
explicitly when it is compiled in F77.

A program wnit that was normally compiled with -DYNM in FIN requires no
special action regarding storage class when converted to F77.

Reimplemented FIN Constructs

Most of the effort required in converting an FIN program unit to F77
will concern reimplemented constructs. Each instance of such a
construct must be examined, and modified if necessary, to be sure it
will produce the results desired when run under F77.

The reimplemented FIN constructs and their F77 versions are as follows,
In each case where standard conformance is involved the F77 version
conforms to the FORTRAN 77 standard, while the FIN version conforms to
the FORTRAN 66 standard.

Note

Most reimplemented constructs are syntactically identical in
FIN and F77. No error messages will result when such

constructs are encountered. They must be found by inspecting
the source code.

Listing Control: In FIN, the interaction between the compiler options

that create the source listing and the program statements that turn

C-5 Fourth Edition

FORTRAN 77 Reference Guide

source listing generation on and off is somewhat different than in F77.
The two charts below illustrate the difference. Note that in F77,
FULL LIST is an obsolete synonym for LIST.

FIN ~LIST NO ~LIST YES ~EXPLIST

NO LIST NO LISTING NO LISTING FULL LISTING
LIST NO LISTING NORMAL LISTING FULL LISTING
FULL LIST NO LISTING FULL LISTING FULL LISTING
F77 -ND_LISTING -LISTING ~EXPLIST

NO LIST NO LISTING NO LISTING NO LISTING
LIST NO LISTING NORMAL LISTING FULL LISTING
FULL LIST NO LISTING NORMAL LISTING FULL LISTING

Global Mode: FIN assigns the global mode to those names that are not
explicitly typed and whose first appearance in the program follows the
global mode statement. F77 assigns the global mode to all names that
are not explicitly typed, whether or not they follow the global mode
statement.

Intrinsic Functions: FIN treats IFIX, FLOAT, and IDINT as generic
functions, not restricting their argqument to a particular type. F77
provides the INT and REAL generic functions, but treats TIFIX, FLOAT,
and IDINT as specific functions requiring a particular type.

FIN allows LOGICAL*2 arquments in the following intrinsics: LS, RS,
SHFT, LT, RT, AND, OR, NOT, and XOR. F77 allows only INTEGER*2 and
INTEGER*4 arguments,

FORTRAN 77 introduces a number of new intrinsic functions. Their names
may conflict with those of user—-supplied subprograms. To cause such a
duplicate name to refer to the user-supplied subprogram, specify it in
an EXTERNAL statement, The similarly-named intrinsic will then be
unavailable to that program unit.

Intrinsics in Constant Expressions: FIN allows a subset of the
intrinsic functions in constant expressions. F77 does not allow this
practice.

Fourth Edition C-6

CONVERTING FIN PROGRAMS TO F77

Input/Output: In FIN, an unformatted sequential file must oonsist of
fixed length records. In F77, such a file may consist of either fixed
or variable length records.

In FIN, BACKSPACE works only on tape files. In F77, it will work on
all formatted sequential files and on fixed length unformatted
sequential files.

In FIN, a READ or WRITE can access more than one record. In F77, a
READ or WRITE always accesses a single record (slash editing excepted).

The method for increasing maximum record length has been greatly
simplified in F77. Use of ATTDEV is no longer required. The F77
method is described under INCREASING MAXIMJM RECORD LENGTH in
Chapter 6.

Extra Parentheses in I/0 Statements: FIN ignores extra parentheses in
I/0 lists, while F/7 considers them syntax errors. Prohibiting the
extra parentheses prevents certain ambiquities that ocould otherwise
arise in an I/0 list.

Blanks in Format Lists: FIN allows blanks as well as ocommas to
separate format list descriptors. F77 ignores blanks in format lists
unless they are in a character or Hollerith constant.

Slash Edit-Control Descriptor: In FIN, execution of the statement:

WRITE (N,100)
100 FORMAT (/)

will cause one blank record to be written, In F77, two blank records
will be written.

STOP and PAUSE Statements: In FIN, the number (if any) printed by a
STOP or PAUSE statement will be in octal form. F77 prints such a
number in decimal,

The FIN STOP statement has no effect on I/0 wnits. The F77 STOP
statement closes any I/0 units used by the program,

Unsupported FIN Constructs

The only frequently used FIN oonstruct not supported in F77 is the
TRACE statement, which was used in conjunction with the —-TRACE compiler
option (also unsupported) as a debugging tool.

c-7 Fourth Edition

FORTRAN 77 Reference Guide

When assistance in debugging an F77 program is required, use the far
more powerful Source Level Debugger, available from Prime as a
separately priced item, For complete information on using the
debugger, see the Source Level Debugger User's Guide.

Certain specialized FIN constructs are dependent on FIN compiler
options that are not supported by the F77 compiler., When one of these
constructs has been used in an FIN program unit being converted to F77,
it must be replaced with an equivalent F77 construct, or eliminated
entirely. The options are:

The -32R and —-64R options: A few FIN constructs are available only in
R-mode: the commonly used ones are multi-level alternate returns, and
variable-length argument lists. Methods that provide the same results
and work in V= and I-mode can always be found.

The —SFO Option: The FIN constructs dependent on the —SPO option are
not enumerated here, as they are of interest only to certain
specialized users who need no additiomal information. If there is no
alternative to using an —-SRO construct, be sure that the program unit
is otherwise callable from F77, and keep it in FIN form,

Obsolete FIN Constructs

The following features of FIN are not standard in FORTRAN 77. F77 has
been extended to accept them, but they are coonsidered obsolete
techniques. Do not use them in new programs.

The obsolete techniques will always produce the same results in F77 as
in FIN, They are mentioned here so that those converting FIN programs
to F77 will know that, despite their nonstandard status, they can be
ignored during the conversion process. They are not explained here,
because they are properly part of FIN, not F77. For information on
them, see the FORTRAN Reference Guide.

The obsolete features are:
e The format nOddd... for octal constants
@ The ENQODE and DEQODE statements for in—storage type oonversion
® Hollerith strings

e Indexing a multi-dimensiomal array with a one-subscript
reference in an EQUIVALENCE statement

e Alternate returns using a GO TO to a statement-label dummy
variable

@ Use of "S$" instead of "*" to denote a statement label constant

Fourth Edition C-8

(ONVERTING FIN PROGRAMS TO F77

e Extended DO ranges, except when the F77 compiler is invoked with
the -DO1 option for generation of FIN type DO loops. If an
extended DO range is present in a program compiled with -NODOl
(the default) no error will be detected, but unpredictable
results will occur. See Chapter 9 for more on the -DO1/-NO_DOl
option,

PRODUCING AN F77 STANDARD PROGRAM UNIT

An F77 standard unit is a oconverted FIN unit that contains no
optionally acceptable constructs. Such a unit must compile without
errors and give the expected results when oompiled with the default
options —-NO_DO1, -INTL, -LOGL, and -DYNM.

With respect to reimplemented, unsupported, and obsolete FTN

constructs, the task of producing an F77 standard program unit is
identical to that of producing an F77 compatible program unit.

Elimination of Optiomally Acceptable Constructs

To eliminate an FIN program unit's dependence on the similarity of
INTEGER with |INTEGER*2 and LOGICAL with LOGICAL*2, the following steps
can be taken. Where INTEGER*2 or LOGICAL*2 data is specifically
desired, modify or create the appropriate type-statement. Where
INTEGER*4 and LOGICAL*4 will do, be sure that use of the longer data
types will not cause mismatch of arguments in subprogram invocations,
or unexpected results in mixed-type expressions and assignments.

Elimination of dependence on FIN type handling of DO 1loops is
accomplished as follows:

1. Eliminate any extended DO ranges. The simplest way is to
substitute an appropriate subprogram invocation.

2. Where the program unit's logic is unalterably dependent on the
one trip property of the FIN DO loop (which is only rarely the
case) insert appropriate conditional statements into the source
code to insure that the trip will occur.

Existing conditional statements serving only to prevent the compulsory
one trip if the DO test is already satisfied when control reaches the
loop can be left in or deleted as desired. They merely duplicate the
normal action of an F77 DO loop.

Elimination of a program unit's dependence on the -SAVE option is
acocomplished by naming all data items that must be static in a SAVE
statement in the program unit. See the SAVE Statement in Chapter 3.

c-9 Fourth Edition

Memory Formats
for K77

Prime computers use a 16-bit memory halfword. All FORTRAN 77 data
types except CHARACTER occupy either 32 bits or some multiple of 32
bits, CHARACTER data occupies one byte per character.

F77 includes the INTBEGER*2, LOGICAL*2, and LOGICAL*1 types for
compatibility with FIN; these occupy 16, 16, and 8 bits respectively.
These types should never be used in new programs,

Figure D-1 summarizes the sizes and internal bit-usages of the F77 data
types. Detailed descriptions of each type are presented below.

DATA TYPES

LOGICAL*4 32 bits, Bits 1-31=0 Bit 32: 0=,FALSE.
1=,TRUE.

IOGICAL*2 16 bits. Bits 1-15=0 Bit 16: 0=.FALSE.
1=,TRUE.

IOGICAL*1 8 bits., Bits 1-7=0 Bit 8: 0=.FALSE.
1=,TRUE.

INTEGER*2 16 bits., Bit 1 = sign bit, INTEGER numbers are in 2's
complement representation with a value range of -32768 to 32767. These
numbers in octal are '100000 and '077777 respectively. Note that -0=0,
and —(-32768) = —-32768.

D-1 Fourth Edition

FORTRAN 77 Reference Guide

1 1 32
1
LogicAL*4
1
1 16
LoaicaLrz
1 8
LoGICAL*1
1 2 16 32
!
§ INTEGER*4,
T
12 16
s INTEGER*2
12 16 24 32
\
s FRACTION EXPONENT |REAL{(REAL™4)]
T
12 16 32 48 64
1 1
s FRACTION EXPONENT
I T
12 16 12 a8
i 1 1
>
s FRACTION EXPONENT =
L] T T
80 9% 12 128
] 1
FRACTION UNUSED
T 1
12 16 2 32 48 56 64
1 1
S| FRACTION (REAL) S Ear - |8 FRACTION (IMAGINARY) it
! T
12 a2 a8 64 9% 12 124
1 1
PONENT
S| FRACTION (REAL) BRean s FRACTION (IMAGINARY) et
| T
1 8
CHARACTER

Internal Representations of Prime F77 Data Types
Figure D-1

Fourth Edition

D-2

-,
e
—
DOUBLE PRECISION
(REAL*8)!
-
[REAL*t6.
compLex*s|
— - o
COMPLEX*16.
——

MEMDRY FORMATS FOR F77

Integer arithmetic is always exact. Integer division truncates, rather
than rounds.

INTEGER*4 32 bits. Bit 1 = sign bit. Integer numbers are in 2's
complement representation with a wvalue range of -2147483648 to
2147483647, These numbers, in octal (halfword 1, halfword 2) are
(100000, '000000) and ('077777, '177777) respectively. Note that -0=0
and —(-2147483648) = -2147483648.

Integer arithmetic is always exact. Integer division truncates, rather
than rounds.

Caution

Explicit use of DBLE (FLOAT (I*4)) can cause the loss of the
low-order 8 bits of precision. Mixed mode arithmetic, however,
will not lose precision.

REAL*4 32 bits. Bit 1 = sign bit. Bits 2-24 = fraction. Bits 25-32 =
exponent, The fraction and sign are treated as a 2's complement number
and the exponent is an unsigned, excess 128, binary exponent. In
general, any floating point number is represented as:

N =M * 2%*(E-128)
where:

=1k Wb & =1l Gle b & Tl
0 < E < 255

Zero is represented as M= 0, E= 0,

The value range, in octal (halfwordl, halfword2) is:
(100000, '000377) [SeeNote] to ('077777, '177777)

corresponding to —=1*2*%(127) and (l-e)*2**(127).

The values closest to zero, in octal are:
('137777, '177400) and ('040000, '000000) [See Note]

corresponding to (-1/2+e)*2**-128 and 1/2*2*%*-128

D=3 ' Fourth Edition

FORTRAN 77 Reference Guide

=N’ormallzatlon ensures that bits 1 and 2 are dlfferent and is achieved
by shifting left 1 bit at a tlHE.” Hence, the effectlve pre0151on is
 between 22 and 23 bits. y

the-

These numbers will cause exponent overflow if regated due to
the asymmetry of 2's comp&ement notation,

DOUBLE PRECISION 64 bits. Bit 1 = sign bit. Bits 2-48 = fraction.
Bits 49-64 = exponent. The fraction and sign are treated as a 2's
complement number and the exponent is a signed, excess 128, binmary
exponent. In general, any double precision floating point number is
represented as:

-

N=M*%*2 (E-128)
where:

-1 <M<1/20r1/2<M<1
-32768 < E < 32767.

Zero is represented as M= 0, E=0
The value range, in octal (halfwordl, halfword2, halfword3, halfwordd)

is:

(100000, '000000, '000000., '077777) [See Note] to
(*o77777, ‘177777, ‘177777, '077777)

corresponding to -1*2%%*32639 and (1-e)*2 32639

The values closest to zero, in octal, are:

('137777, '177777, '177777, '100000) and
('040000, '000000, '000000, '100000) [See Note]

corresponding to (-1/2+4e)*2**-32896 and 1/2*2*%*-32896
Normalization ensures that bits 1 and 2 are different and is achieved

by shifting left 1 bit at a time. Hence, the effective precision is
between 46 and 47 bits.

Fourth Edition D-4

MEMORY FORMATS FOR F77

Note

These numbers will cause exponent overflows if negated due to
the asymmetry of 2's complement notation.

REAL*16 112 bits. Bit 1 = sign bit. Bits 2-48 = fraction. Bits

49-64 = exponent. Bits 65-112 are additiomal fraction bits. Bits
113-128 are unused (set to 0). The fraction and sign are treated as a
2's complement number and the exponent is a signed, excess 128
exponent. A REAL*16 floating point number is represented as:

N=M* 2 (E-128)
where:

-1 <M<1/20r1/2 <M1
~32768 < E < 32767

Zero is represented as M= 0, E= 0

The value range, in octal (halfwordl, halfword2,...halfword8) is:

(*100000,'000000, '000000, f000000,"'077777,"'000000,'000000,'000000) to
('077777,'177777,'177777,'077777,'177777,*177777, * 177777 , ' 000000)

corresponding to —-1*2**32639 and (1-e)*2 32639 [See Note] _‘

The values closest to zero, in octal, are:

('137777,'177771,'177777,'100000,'177777,'177777,'177777,'000000) and
('040000,'000000,'000000,'100000,'000000,'000000,'000000,"000000)
corresponding to (-1/2+e)*2*%-32896 and 1/2*2%*-32896 [See Note]
Normalization ensures that bits 1 and 2 are different and is achieved

by shifting left 1 bit at a time. The effective precision is between
112 and 113 bits,

Note

These numbers will cause exponent overflows if negated due to
the asymmetry of 2's complement notation.

D-5 Fourth Edition

FORTRAN 77 Reference Guide

(OMPLEX 64 bits. A complex number is defined as two REAL*4 entities
(see above) representing the real and imaginary parts.

(OMPLEX*16 128 bits. Same as COMPLEX, except that two DOUBLE PRECISION
entities are used. _

CHARACTERS Prime uses ASCII as its standard internal and external
character code. It is the 8-bit, marking variety (parity bit always
on). Thus, Prime's code set is effectively a 128-character ocode set.,
(ASCII spacing representation, parity bit always off, can be entered
into the system, but most system software will fail to recognize the
characters as their terminal printing equivalent.)

Each character occupies one byte. The length of a CHARACTER item may
be up to 32767 characters.

Fourth Edition D6

SHORTCALL

Examples

This appendix contains examples of the SHORTCALL statement for both V
mode and I mode.

V-MODE EXAMPLES

This section contains an example of a FORTRAN 77 main program and three
Prime Macro Assembler (PMA) routines that are called from the FORTRAN
77 program using the Prime SHORTCALL Interface. The F77 program and
the PMA routines are all V-mode programs. For information about
writing the PMA programs and how the interface works, see the Assembly
Language Programmer's Guide. The SHORTCALL statement for F/7 1is
discussed in Chapter 3 of this manual.

The V-Mode Programs

The F77 main program, TEST SHORTCALL.F77 is as follows:

C Test Program — Requires FOO.PMA, RAR.PMA, and NUM.PMA
PROGRAM TEST SHORTCALL

PARAMETER (IPAR = 2)

INTEGER I, J, K, FOO,NUM
C Three PMA routines are SHORTCALLED: FOO (one argument),
C BAR (no argument), and NUM (two arguments)

E-1 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

C
SHORTCALI, FOO(IPAR*4), BAR, NUM(2)
C
C Initialize I, J, and K
I=1
J = 130
K=3
I = FOO(J)
WRITE (1, 10) I
10 FORMAT ('The value of I should be 13. I =' I4)
C PRINT *, 'The value of I should = 13, it is L1

wun

CALL BAR

I = NUM(J,K)

WRITE (1, 20) J, K, I
20 FORMAT ('J ="', I4, ' K=', 14, "' I=J+K; I=', 1I4)
C PRINT *, 'J=',J," K= = JK -

STOP

END

TEST_SHORTCALL.F77 calls the PMA routines FOO, BAR, and NUM. FOO and
NUM are functions. F0O.PMA, BAR.PMA, and NUM.PMA are as follows:

* FOO.PMA
* Initialize V-mode program
*
SEG
RLIT
* Define FOO's entry point name
SUBR FOO
DYNM ARG1 (2)
*
* Save address of first (and only) argument
FOO STL ARGl
* Load argument into L register
LDL ARG],*
* Divide argument by 10
DIV =10
* Return to calling program
JMP XB%
END

Fourth Edition, Update 2 E-2

SHORTCALL EXAMPLES

* BAR.PMA
* Initialize V-mode program
SEG IMPURE
RLIT
* Define BAR's entry point name
ENT BAR
EXT TNOU
*
DYNM TEMP(2)
* Save return address in TEMP
BAR EAL XB%
ST, TEMP
* Use PCL to print out a message
PCL PTNOU, *
AP =C' BAR subroutine was SHORTCALLed!!',S
AP =32 IS:J
* Restore return address
EAXB TEMP, *
* Return to calling program
JMP XB%

*
PINCU IP TNOU
*

END

* NUM, PMA
* Initialize V-mode program
SHG
* Define NUM's entry point name
SUBR NUM
. DYNM ARG1(2), ARG2(2)
* Save address of first argument in ARGl
NUM STL ARGl
* Save return address in ARG2
EAL XB%
STL. ARG2
* Load pointer to first argqument in XB
EAXB ARG, *
* Load first argument into L register
L XB
Add second argument to first argument
AL, XB
* Restore return address
EAXB ARG2,*
Return to calling program
JMP XB%
END

*

*

E-3 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Compiling, Linking, and Executing the V-Mode Programs

To execute the programs, compile TEST SHORTCALL and assemble FOO,
and NUM. Link the four programs, creating TEST_SHORTCALL.RUN.
invoke the programs with

r test_shortcall

the result is

The value of I should be 13. I = 13
BAR subroutine was SHORTCALLed!
J=130 K= 3 I=J+K; I=133
*k%x%k GTOP

I-MODE EXAMPLES

The I-mode FORTRAN 77 program CALIQF.F77 calls two PMA functions,
SQUARE and CUBE, using the Prime SHORICALL Interface.

The I-Mode Programs .

CALIQF.F77 calls two PMA functions; CALLIQF.F77 must be compiled
with the -32I option.

C Test Program for I mode SHORTCALL
C Requires SQCUBE.PMA
PROGRAM CALLOF

C The PMA program SQCUBE with two entry points
C SQUARE and CUBE is SHORTCALLED; both SQUARE
C and CUBE are functions.
C

INTEGER X, Y, SQUARE, CUBE

SHORTCALL SQUARE, CUBE

X = SQUARE(13)
WRITE (1, 10) X

10 FORMAT ('The value of X should be 169. X =' I4)
Y = CUBE(10)
WRITE (1, 20) Y

20 FORMAT ('The value of Y should be 1000. Y =' I5)
STOP
END

Fourth Edition, Update 2 E-4

BAR,
If you

s

=

SHORTCALL EXAMPLES

The I-mode program SQCUBE.PMA contains the two functions SQUARE and
CUBE that are SHORTCALLed by CALIQF.F77.

* SQCUBE. PMA
*
SEGR
ENT SQUARE declare entry to SQUARE
ENT CUBE declare entry to CUBE
CUBE L 6,RL
M 6,R1
PIM 6 position for next multiply
JMP SQ1 jump to next multiply
SOUARE L 6,Rl
01 M 6,RL
PIM 6 position for return
L 2,6 move into R2 (where F77 expects it)
JMP R
END

Campiling, Linking, and Executing the I-Mode Programs

To execute the programs, compile CALLQF with the -32I option and
assemble SQCUBE. Link the two programs, creating CALLQF.RIN. If you
invoke the programs with

r callgf

the result is

The value of X should be 169. X = 169
The value of Y should be 1000. Y = 1000
kkkk STOP

E-5 Fourth Edition, Update 2

The Search Rules
Facility

INCLUDE FILES AND THE SEARCH RULES FACILITY

As of Revision 21.0, the PRIMDS search rules facility enables you to
establish an INCLUDES search list. An INCLUDES search list is a list
of directories to be searched whenever an INCLUDE statment or SINSERT
directive is processed by the compiler. Although there are several
kinds of search lists, this appendix explains only the INCLUDES search
list. For complete information about PRIMOS search rules, see the
Advanced Programmer's Guide, Volume II.

When you specify a file in an INCLUDE statement or SINSERT directive,
you must ordinarily give as much of the file pathname as PRIMDS needs
to locate the file. If you often use the INCLUDE statements or SINSERT
directives to refer to files, and if the files are kept in a number of
different directories, keeping track of the file pathnames can be
difficult. Now, however, you can locate a file by supplying only a
filename and using the search rules facility to provide the full
pathname.

Establishing Search Rules

To establish the search rules, perform the following steps:

1. Create a template file called

[yourchoice.] INCLUDES. SR

G-1 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

This file should contain a 1list of the pathnames of the
directories that contain the files you often refer to when
using INCLUDE and SINSERT statements. List the directories in
the order in which you want them to be searched. For example,
you might create a file called MY.INCLUDES.SR that contains the
following directory names:

<{SYS1>MASTER_DIR>INSERT_FILES
<SYS2>ME

2. Activate the template file with the SET SEARCH RULES (SSR)
command. For example, if your file is named MY.INCLUDES.SR,

type

OK, SSR MY, INCLUDES

This command sets your INCLUDES$ search list. This search list
may contain system search rules and administrator search rules
in addition to the rules you specified in MY.INCLUDES.SR.

When you give the SSR command shown in step 2, PRIMOS oopies the
contents of MY.INCLUDES.SR into your INCLUDE$ search list. If you have
no special system or administrator search rules, your INCLUDES search
list appears as follows when you give the LIST SEARCH RILES (LSR)
command :

List: INCLUDES
Pathname of template: <MYSYS>ME>F77>MY.INCLUDES.SR

[home_dir]
<SYS1>MASTER DIR>INSERT FILES
<SYS2>ME

[home_dir], your current attach point, is the system default. TIt is
always the first directory searched, unless you remove it from the list
or change the order of evaluation by using the NO_SYSTEM option of the
SSR command. Additional search rules, established as system—wide
defaults by your system administrator, may also appear at the beginning
of your INCLUDE$ search list. The above search rules would initiate
the search in [home dir], then search <SYS1>MASTER DIR>INSERT_FILES,
and lastly <SYS2>ME.

The SET SEARCH_RULES and LIST SEARCH RULES commands are desgribed in
the PRIMDS Commands Reference Guide. For more information about
establishing search rules, see the Advanced Programmer's Guide, Volume
II.

Fourth Edition, Update 2 G-2

THE SEARCH RJLES FACILITY

Using Search Rules

Once you have set the search list, any INCLUDE or SINSERT statement in
a program can give just the filename rather than the full pathname of
the file. PRIMOS then searches the contents of the directories in the
INCLUDES search list for the filename specified in the INCLUDE or
SINSERT statement. If PRIMOS finds the file, it stops searching and
returns the full pathname of the file to the compiler. The coompiler
then uses this pathname to locate the file and inserts its contents
into the source program.

Using [referencing dir]

The Advanced Programmer's Guide describes several expressions you can
use in your list of search rules. One of these, [referencing dir], has
a special meaning for INCLUDE$ search lists. Like [home dir],
[referencing dir] is a variable that PRIMDS replaces with a directory
pathname. [referencing dir] always evaluates to the pathname of the
directory from which the request for an INCLUDE or SINSERT file is
made. Thus, if an INCLUDE or SINSERT statement is located in a
program, [referencing dir] evaluates to the pathname of the directory
that contains the program.

[referencing dir] may be useful if all of the following three
circumstances hold:

@ You are compiling a program that is not in your current
directory.

e The directory containing the program is not in your search rules
list.

e Your program contains one or more INCLUDE or SINSERT statements.

Under the above circumstances, the search for the INCLUDE or S$INSERT
file succeeds only if [referencing dir] is in your list of search
rules.

You can also use [referencing dir] for programs that contain nested
INQLUDE or SINSERT statements. INCLUDE or $INSERT statements are
nested if the file specified by an INCLUDE or SINSERT statement also
contains an INCLUDE or SINSERT statement. If nested INCLUDE or S$INSERT
statements specify files that are located in the same directory as the
file in which they are nested, putting [referencing dir] at the top of
your list of search rules could speed up the search somewhat.

G-3 Fourth Edition, Update 2

.

Alphabetic Summary
of K77 Intrinsic
Functions

This appendix is a quick reference to the F77 Intrinsic Functions. The
functions are presented alphabetically according to how they are
referenced. In most instances the Specific Name of the function is
used, but in those instances where there is no Specific Name, the list
uses its Generic Name. For a detailed discussion of the Intrinsic
Functions see Chapter 8.

Alphabetic Summary of F77 Intrinsic Functions

How Number of Argqument Result Generic
Referenced Arguments Type Type Name
ABS 1 Real Real ABS
ACOS 1 Real Real ACOS
ATMAG 1 Compl ex Real
AINT 1 Real Real AINT
ALOG 1 Real Real LOG
ALOG10 1 Real Real LOG10
AMAXO >= 2 Integer Real MAX
AMAX1 >= 2 Real Real MAX
AMINO >= 2 Integer Real
AMIN1 2 Real Real MIN
AMOD 2 Real Real MOD
AND Any Integer Integer
ANINT 1 Real Real ANINT
ASTN 1 Real Real ASTN

H-1 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Alphabetic Summary of F77 Intrinsic Functions

How Number of Argument Result Generic
Referenced Arguments Type Type Name
ATAN 1 Real Real ATAN
ATAN2 2 Real Real ATAN2
CABS 1 Complex Real ABS
CCos 1 Complex Complex Cos
CDABS 1 Complex*16 Double ABS
CbCos 1 Complex*16 Complex*16 Cos
CDEXP 1 Complex*16 Complex*16 EXP
CDLOG 1 Complex*16 Complex*16 LOG
CDSIN 1 Complex*16 Complex*16 SIN
CDSQRT 1 Complex*16 Complex*16 SORT
CEXP 1 Complex Complex EXP
CHAR 1 Integer Character
CLOG 1 Compl ex Complex LOG
CMPLX 1l or 2 Integer Complex CMPLX
CMPLX lor2 Real Complex CMPLX
CMPLX 1lor 2 Double Complex CMPLX
CMPLX lor 2 Real*le Complex*16 CMPLX
CMPLX lor 2 Complex Complex QMPLX
CMPLX 1l or 2 Complex*16 Complex CMPLX
CONJG 1 Complex Complex CONIG
aos 1 Real Real a0s
COosH 1 Real Real COSH
CSIN 1 Complex Complex SIN
CSQRT 1 Complex Complex SORT
DABS 1 Double Double ABS
DACOS 1 Double Double ACOS
DASTN 1 Double Double ASIN
DATAN 1 Double Double ATAN
DATAN2 2 Double Double ATAN2
DBLE 1 Integer Double DBLE
DBLE 1 Real Double DBLE
DBLE 1 Double Double DBLE
DBLE 1 Complex Double DBLE
DBLEQ 1. Real*16 Double DBLE
DCMPLX lor 2 Integer Complex*16 DCMPLX
DCMPLX lor2 Real Complex*16 DCMPLX
DCMPLX 1 or 2 Double Complex*16 DCMPLX
DCMPLX 1 or 2 Real*l6 Complex*16 DCMPLX
DCMPLX l or 2 Complex Complex*16 DCMPLX
DCMPLX 1 or 2 Complex*16 Complex*16 DCMPLX
DCONIG 1 Complex*16 Complex*16 CONIG
DCOS 1 Double Double cos
DCOSH 1 Double Double COSH
DDIM 2 Double Double DIM
DEXP 1 Double Double EXP
DIM 2 Real Real DIM
DIMAG 1 Complex*16 Double
DINT 1 Double Double ATNT

Fourth Edition, Update 2 H-2

- ALPHABETIC SUMMARY OF F77 INTRINSIC FUNCTIONS

Alphabetic Summary of F77 Intrinsic Functions

How Number of Argument Result Generic
Referenced Arguments Type Type Name
DLOG i} Double Double LOG
DLOGLO 1 Double Double LOG10
DMAX1 >= 2 Double Double MAX
DMINL 2 Double Double MIN
DMOD 2 Double Double MOD
DNINT i Double Double ANINT
DPROD 2 Real Double
DREAL 1 Complex*16 Double DBLE
_ DREAL 1 Complex*16 Double
DSIGN 2 Double Double SIGN
DSIN i Double Double SIN
DSINH 1 Double Double SINH
DSQRT 1 Double Double SQRT
DTAN 1 Double Double TAN
DTANH i Double Double TANH
EXP 1 Real Real EXP
FLCAT 1 Integer Real REAL
IABS 1 Integer Integer ABS
ICHAR 1 Character Integer
o IDIM 2 Integer Integer DIM
IDINT 1 Double Integer INT
IDNINT 1 Double Integer NINT
IFIX L Real Integer INT
INDEX 2 Character Integer
INT 1 Integer Integer INT
INT 1 Real Integer INT
INT 1 Compl ex Integer INT
INT 1 Complex*16 Integer INT
INTL 1 Integer Integer*4 INTL
- INTL 1 Real Integer*4 INTL
INTL 1 Double Integer*4 INTL
INTL 1 Real*16 Integer*4 INTL
INTL 1 Complex Integer*4 INTL
INTL 1 Complex*16 Integer*4 INTL
INTS 1 Integer Integer*?2 INTS
INTS 1 Real Integer*2 INTS
INTS 1 Double Integer*2 INTS
INTS 1 Real*16 Integer*2 INTS
INTS 1 Complex Integer*2 INTS
INTS 1 Compl ex*16 Integer*2 INTS
IQINT 1 Real*16 Integer INT
IQNINT 1 Real*16 Real*16 NINT
ISIGN 2 Integer Integer SIGN
LEN 1 Character Integer
- IGE 2 Character Logical
LGT 2 Character Logical
LLE 2 Character Logical
- LT 2 Character Logical

H-3 Fourth Edition, Update 2

FORTRAN 77 REFERENCE GUIDE

Alphabetic Summary of F77 Intrinsic Functions

How Number of Argument Result Generic
Referenced Arguments Type Type Name
LOC 1 Any but CHAR Integer*4

or LOG*1
LS 2 Integer Integer
LT 2 Integer Integer
MaXO0 >= 2 Integer Integer MAX
MAX1 >= 2 Real Integer
MINO 2 Integer Integer MIN
MIN1 >= 2 Real Integer
MOD 2 Integer Integer MOD
NINT 1 Real Integer NINT
NOT 1 Integer Integer
OR Any Integer Integer
QABS 1 Real*16 Real*16 ABS
QACOS 1 Real*16 Real*16 ACOS
QASIN 1 Real*16 Real*16 ASIN
QATAN b Real*16 Real*16 ATAN
QATAN2 2 Real*16 Real*16 ATAN2
QCos 1 Real*16 Real*16 Cos
QCOSH 1 Real*16 Real*16 COSH
QDIM 2 Real*16 Real*16 DIM
QEXP 1 Real*16 Real*16 EXP
QINT 1 Real*16 Real*16 AINT
QLCG 1 Real*16 Real *16 LOG
QLOG10 1 Real*16 Real *16 LOGL0
oMAX1 >= 2 Real *16 Real*16 MAX
QMIN1 2 Real *16 Real*16 MIN
QMOD 2 Real*16 Real*16 MOD
QNINT 1 Real *16 Real*16 ANINT
QPRCD 2 Double Real*16
QSIGN 2 Real*16 Real*16 SIGN
QSIN 1 Real*16 Real*16 SIN
QSINH 1 Real *16 Real*16 SINH
QSQRT 1L Real*16 Real*16 SORT
QTAN 1 Real*16 Real*16 TAN
QTANH 1 Real*16 Real*16 TANH
REAL 1 Real Real REAL
REAL 1 Real*16 Real REAL
REAL 1 Complex Real REAL
REML 1 Complex*16 Real REAL
REAL 1 Complex Real
RS 2 Integer Integer
RT 2 Integer Integer
SHEFT 2 or 3 Integer Integer
SIGN 2 Real Real SIGN
SIN 1 Real Real SIN
SINH 1 Real Real SINH
SNGL 1 Double Real REAL
Fourth Edition, Update 2 H-4

ALPHABETIC SUMMARY OF F77 INTRINSIC FUNCTIONS

Alphabetic Summary of F77 Intrinsic Functions

How Number of Argument Result Generic
Referenced Arguments Type Type Name
SORT 1 Real Real SORT
TAN 1 Real Real TAN
TANH 1 Real Real TANH
X0R Any Integer Integer

H-5 Fourth Edition, Update 2

INDEX

Symbols
(number sign), 7-11

$ (dollar sign), 7-11

* (asterisk), 4-4, 7-11
+ (plus), 7-10

; (comma), 7-11

- (minus), 7-10

. (decimal point), 7-11

Numbers

-32I option, 9-4

-32IX option, 9-5
-32R option, C-8

-64R option, C-8

-64V option, 9-5

Index

A

A descriptor, 7-8

ACCESS= option, 6-11, 6-16
ACTION= option, 6-12
Actual argument, 2-1

—ALI.OW_PRECONNECTION compiler
option, 9-5

Alphabetic Summary of F77

Intrinsic Functions, H-1 to

BH-5
Alternate returns, 8-29, 8-30
ANYUNIT= option, 6-12

Arguments,
actual, 2-1
arrays as, 8-33, 8-34
dummy, 2-2
intrinsic functions as, 8-3,
8-4
long and short integer, 8-4
subprograms as, 8-34, 8-35

Fourth Edition, Update 2

FORTRAN 77 Reference Guide

Arithmetic,
conversion, 2-17
data in assignment statement,
4-2
expressions,
operators,

2-1, 2-13
2=13

Arrays,
as arquments,
assumed-size,

8-33, 8-34
8-32

character, as arquments, 8-34
description of, 2-11
dimensions, adjustable, 8-32
multidimensional, 12-1, 12-2
references, 2-11, 2-12
using Namelist with, 6-36 to
6-38
ASCII‘? r 2_2 r 8—14

collating sequence, 8-18

ASSIGN statement, 4-6
ASSIGNED GO TO statement, 5-2

Assigmment statements,
arithmetic data in, 4-2
ASSIGN, 4-6
character data in, 4-5
definition of, 4-1
logical data in, 4-5
mixed-type, 4-3, 4-4
types of, 4-1

Assumed-size arrays

(See -RANGE
compiler option)

Asterisk (*), 4-4, 7-11
B
B descriptor, 7-8, 7-10

B-Format usage, examples of,
7-12

BACKSPACE statement, 6-21, 6-22
-BIG compiler option, 3-12, 9-6
-BINARY compiler option, 9-6

Fourth Edition, Update 2 a2

BIND,
basic commands, 10-4
creating an EPF, 10-2

invoking as a subsystem, 10-2,
10-3

invoking from command line,
10-2, 10-3

linker, 10-1 to 10-8

linking libraries, 10-4

resolving references, 10-6

BIND commands,
FILE, 10-6
HELP, 10-7, 10-8
LIBRARY, 10-5
LOAD, 10-5
MAP, 10-5 to 10-7
Quit, 10-7
table of, 10-4

Blank control editing, 7-14
BLANK= option, 6-11, 6-17
Blanks in format lists, C-7
BLOCK DATA statement, 3-20, 8-27
BN descriptor, 7-14
Business editing, 7-10 to 7-12
BZ descriptor, 7-13
C

CALL statement, 8-24

Calls,
function,
library,

12-3
12-5

Capabilities,
data declaration, 1-2
execution—time, 1-3
input/output, 1-3
subprogram, 1-3

Carriage control, 6-30

-

Character,

arquments, adjustable, 8-31

arrays as arguments, 8-34

assignment, 3-7

comparison of entities, 3-8

concatenation, 3-7

constant editing, 7-9

data in assignment statement,
4-5

editing, 7-8, 7-9

expressions, 2-1, 2-14

function, adjustable, 8-31

input/output, 3-8

intrinsic functions, 3-8

operator, 2-14

Prime Extended Character Set,
A-1

set for FORTRAN 77, 2-2, 2-3

substrings, 3-6

use of octal constants, 3-7

Character data type, 3-6 to 3-8

CHARACTER data type, 2-6, 2-9,
2-10, D-5

Character editing, 7-9
CLOSE statement, 6-15

—CLUSTER compiler option, 9-6,
12-6

Collating sequence, A-6
ASCII-7, 8-18

Column, 2-3
Cm (,) r 7'-11
Comment lines, 2-4

COMMON ,
block, 3-11, 3-12
statement, 3-11, 3-12

Compiler,
end-of-compilation message,
9-4
error messages, 9-2
generation capabilities, 9-1
invoking, 9-1, 9-2

X-3

INDEX

Compiler (continued)
specifying options, 9-2
table of error message severity
levels, 9-3

Compiler control directives,
3-2, 3-23
FULL LIST, 3-23
SINSERT, 3-24
LIST, 3-23
NO LIST, 3-23

Compiler options,

-32I, 9-4

-321X, 9-5

-64R, C-8

-64V, 9-5
abbreviations, 9-24 to 9-27
-ALLON_PRECONNECTION, 9-5
-BIG, 3-12, 9-5

-BINARY, 9-6

-CLUSTER, 9-6, 12-6
-D_STATEMENT, 9-8

-DCLVAR, 9-7

-DEBRUG, 9-7

discussion of, 9-4 to 9-24
-DO1, 9-8

-DYNM, 9-9, 12-6, 12-7
-ERRLIST, 9-9

-ERRTTY, 9-9

-EXPLIST, 9-9, 9-10
—EXTENDED CHARACTER SET, 9-11
-FRN, 9-11

-FIN_ENTRY, 9-12
-FULL,_HELP, 9-12
-FULL_OPTIMIZE, 9-12
-HELP, 9-12

=INFUT, 9-12

-INTL, 2-7c, 9-11

-INTS, 2-7c¢, 9-11

-LCASE, 9-23

-LISTING, 9-13

-LOGL, 2-9, 9-13

"'Ims, 2_'9; 9—12" 9-'13
-MAIN, 9-14

-MAP, 9-14

-MAPWIDE, 9-14

-MAX GROWTH_PERCENT, 9-15
-MAX_SUB_STATEMENTS_INLINE,
9-15

-MAXERRCORS, 9-15
-NESTING, 9-15
—NO_ALLOW_PRECONNECTION, 9-5

Fourth Edition, Update 2

FORTRAN 77 Reference Guide

Compiler options (continued)
-NO BIG, 9-6
-NO_BINARY, 9-6
-NO_D STATEMENT, 9-8
-NO_DCLVAR, 9-7
-NO_DEBUG, 9-7
_m_mlp 9—8
-NO_ERRLIST, 9-9
-NO_ERRITY, 9-9
-NO_EXPLIST, 9-9
-NO_EXTENDED CHARACTER SET,

9-11

-NO_FRN, 9-11
-NO_FTN_ENTRY, 9-12
-NO_MAP, 9-14
-NO_NESTING, 9-15, 9-16
-NO_OFFSET, 9-16
-NO_OPTIMIZE, 12-3
-NO_OVERFLOW, 9-16
_m__mEKB' 9-19
-NO_PRODUCTION, 9-20
-NO_RANGE, 9-20
—-NO_STANDARD, 9-21
-NO_STATISTICS, 9-22
-NO_STORE_CWNER_FIELD, 9-22,
9-23

-NO_XREF, 9-23
-OFFSET, 9-16
-COPTIMIZE, 9-16, 9-17, 12-6
-OVERFLOW, 9-17 to 9-19
-PBECB, 9-19, 9-20, C-8
-PRODUCTION, 9-20
-RANGE, 9-20

—-SAVE, 9-20

—-SILENT, 9-21
HMJR(:E' 9—21

-SPACE, 9-21

-8P0, (-8

—STANDARD, 9-21
-STATISTICS, 9-20, 9-22
—-STORE_OWNER_FIELD, 9-22
table of, 9-24 to 9-27

-TIME, 9-23, 12-6, 12-7
-UPCASE, 9-23
-XREF, 9-23

COMPLEX data, 2-6, 2-8, 2-9, D-5
Complex editing, 7-6
COMPLEX*16 data, 2-6, 2-9, D-5

(:OMPLEX*8 data; 2‘6] 2_8' 2_'9

Fourth Edition, Update 2 X-4

Composition of programs, 2-18,
2-19

Compressed format, 6-3

Computed GO TO statements, 5-2,
5-3

Condition—handling mechanism,
1-8

Conditional output, 7-16
Connecting a file, 6-7
Constants, 2-10
Continuation lines, 2-4

CONTINUE statement, 5-16

Control statements, 5-1 to 5-11,

5-12 to 5-15
arithmetic IF, 5-4
logical IF, 5-5
Control, listing, C-5, C-6

Conventions, Prime documentation,
XVi

Conversion of programs,
FIN to F77, C-1 to C-9
referencing restrictions, -3
steps for, C-2
three degrees of, C-3

Converting FIN programs to F77,
C-1 to C-9

Credit (CR), 7-11

D
D descriptor, 7-3, 7-6, 7-13

-D_STATEMENT compiler option,
9-8

DAM files, 6-3 to 6-5, 6-27

e

Data Base Management System
(DBMS), 1-6

Data declaration capabilities,
1-2

DATA statement, 3-15, 3-16, 12-5
Data storage, 6-1 to 6-7

Data transfer statements,
PRINT, 6-25, 6-31
READ, 6-26 to 6-28
WRITE, 6-25, 6-29, 6-30

Data types,

CHARACTER, 2-6, 2-10, 3-6 to
3—8; D_6

COMPLEX, 2-6, 2-8, 2-9, D-6

COMPLEX*16, 2-6, 2-9, D-6

DOUBLE PRECISION, 2-6, 2-8,
D4

four forms of, 2-5

Hollerith constants, 2-6

INTEGER, 2-6, 2-7

INTEGER*2, 2-6, 2-7c¢, D-1

INTEGER*4, 2-6, 2-7c¢, D-3

LOGICAL, 2-6, 2-9

LOGICAL*1, 2-6, 2-9, D-1

LOGICAL*2, 2-6, 2-9, D-1

LOGICAL*4, 2-6, 2-9, D-1

REAL, 2-6, 2-8

REAL*16, 2-6, 2-8, D-5

REAL*4, 2-6, D-3

REAL*8, 2-6

seven major, 2-4 to 2-10

statement label, 2-6

table of, 2-6, 2-7

DBG (Source Level Debugger),
11-1 to 11-11

-DCLVAR compiler option, 9-7
-DEBUG compiler option, 9-7

Debugger (DBG),

assigning new values to
variables, 11-1

continuing program execution,
11-6, 11-7

definition of, 11-1

entering, 11-2

evaluating data types, 11-8

INDEX

Debugger (DBG) (continued)

examining and modifying data,
11-7, 11-8

getting help, 11-10, 11-11

how to use, 11-2

leaving, 11-11

looking at source code, 11-4

running programs within, 11-3

setting breakpoints, 11-5,
11-6

suspending program execution,
11-5, 11-6

value tracing, 11-9, 11-10

Debugger (DBG) commands,
BREAKPOINT, 11-5, 11-6
colon, 11-7
DBG, 11-2, 11-3
HEL.P, 11-10, 11-11
LET, 11-9
OUFr,; 1111
RESTART, 11-3
SQURCE, 11-4
table of SOURCE subcommands,

11-4
TYPE, 11-8
WATCH, 11-10

Debugging (See Debugger)
Decimal point (.), 7-11
Delimiters, 6-32

Descriptors,
A, 7-8
B, 7-8, 7-10, 7-11
BN, 7-14
BZ, 7-14
D, 7-3, 7-6, 7-13
E, 7-3, 7-5, 7-13
edit-control, 7-2, 7-12 to
7-16
F, 7-3, 7-4, 7-13
field, 7-3 to 7-12
G, 7-3, 7-1, 7-13
I, 7-3, 7-4
L; 7_8
nonnumeric, 7-8 to 7-12
numeric, 7-3 to 7-7
0’ 7_4a
Q, 7-3, 7-6, 7-13
S, 7-14
sp, 7-14

Fourth Edition, Update 2

FORTRAN 77 Reference Guide

Descriptors (continued)
SS, 7—14
Ty 7_15 r 7_16
™, 7-15, 7-16
™, 7-15, 7-16
X, 7-8
Z, 7T-4a

Device control statements,
BACKSPACE, 6-21, 6-22
ENDFILE, 6-24

Device, assigning a, 6-7

Devices and their default FORTRAN
unit numbers, 6-9

DIMENSION statements, 3-9

Direct access file, 6-3 to 6-5,
6-27

DIRECT= option, 6-16

Directives (See compiler control
directives)

Dividing integers, 12-5, 12-6

DO statement, 5-9 to 5-11, 5-12

to 5-16

DO loops, 5-9 to 5-11, 5-12 to
5-16

execution of, 5-10

execution of range, 5-11

FIN compatibility, 5-13, 5-14

nested loops and transfer of
control, 5-12

range of, 5-10

DO WHILE Statement, 5-14 to 5-16
-DOl compiler option, 9-8
Documentation conventions, xvi
Dollar sign (§), 7-11

DOUBLE PRECISION data, 2-6, 2-8,
D-4

Double precision editing, 7-6

Fourth Edition, Update 2 X-6

Dummy argument, 2-2
Dynamic storage default, C-5

E
—-ECS compiler option, 8-15

Edit-control descriptors, 7-2,
7-12 to 7-16

Editing, (See also descriptors)
blank control, 7-14
business, 7-10 to 7-12
character, 7-8, 7-9
character constant, 7-9
complex, 7-6
double precision, 7-6
files, 6-5
general, 7-6, 7-7
hexadecimal, 7-4a
Hexadecimal, 7-4a
integer, 7-4
logical, 7-8
octal, 7-4a
Octal, 7-4a
positional, 7-15
real (Exponential), 7-5
real (Nonexponential), 7-4
REAL*16, 7-6
sign control, 7-14

END DO Statement, 5-16
END statement, 5-18

End-of-compilation message,
compiler, 9-4

END= label, 6-27
Endfile record, 6-2
ENDFILE statement, 6-24
Entry points, 8-29

Entry points, secondary, 8-28

ENTRY statement, 8-28

EPF (Executable Program Format),
10-1, 10-2

BEQUIVALENCE statement,
3-14

3=13,

ERR= label, 6-27

ERR= option, 6-12, 6-16
-ERRLIST compiler option, 9-9
Error messages,

compiler, 9-2

level of, 9-3

Errors and condition-handling
mechanism, 1-8
Errors during I/0, 6-33
-ERRTTY compiler option, 9-9
Evaluation operators, 2-14

Executable Program Format (EPF),
10-1, 10-2
Executing programs, 10-8

Execution—time capabilities, 1-3

EXIST= option, 6-16

-EXPLLIST compiler option, 9-9,
9-10

Expressions,

arithmetic, 2-1

character, 2-1

fixed-length character, 2-2
integer, 2-2

integer constant, 2-2

types of, 2-13 to 2-16

—-EXTENDED CHARACTER SET compiler
option, 9-11

Extensions to FORTRAN 77, 1-4
EXTERNAI, statement, 3-17

X-7

INDEX

13

F descriptor, 7-3, 7-4, 7-13

FSIOBF, 6-25, 7-15
F77,
and Prime utilities, 1-6
definition of, 1-2
interface to other languages,
1-5
intrinsic function set, 8-2
programming examples, B-1 to
B-16
programs, converting from FIN,
C-1 to C-9
restrictions, 1-5
variables, 2-11

F77 Intrinsic Functions,
Summary of, H-1
Field descriptors, 7-3 to 7-12
File control statements,
CLOSE, 6-15
INQUIRE, 6-16 to 6-20
OPEN, 6-11 to 6-14
table of INQUIRE statement
options, 6-18 to 6-20
table of OPEN statement
options, 6-13 to 6-15
FILE= option, 6-11, 6-16
Files,
and programs, 6-7, 6-8
assigning a device, 6-7
connecting a, 6-7
DaM, 6-4, 6-5, 6-27
definition of, 6-2
direct access, 6-3, 6-4, 6-27
editing, 6-5
funit number, 6-8
internal, 6-5
opening a, 6-7, 6-8
operations on, 6-9
S-AM; 6—4' 6_5
sequential access,
unit, 6-7

6_3 r 6_4

Fixed-length character
expression, 2-2

Fourth Edition, Update 2

FORTRAN 77 Reference Guide

Fixed-length records, 6-3 FORTRAN 77, related documents
(continued)
FMT=, 6-27 FORTRAN (FTN) Reference Guide,
xiii
FORM= option, 6-11, 6-16 FORTRAN 77 Programmer's
Companion, xiii
Format, 6-26 Guide to Prime User Documents,
XV
FORMAT, 6-26 New User's Guide to Editor and
Runoff, xiv
Format lists, Prime User's Guide, xiii
blanks in, C-7 PRIMDS Commands Programmer's
description of, 7-2 Companion, xv
Programmer's Guide to BIND and
FORMAT statement (See EPFs, Xiv
Descriptors; Editing) Source Level Debugger User's
Guide, =xv
FORMAT statements, 7-1 to 7-16 Subroutines Reference Guide,
Xiv
Format, line, 2-3, 2-4 The ANSI Standard, xv
Formatted record, 6-2 FORTRAN 77, sources of
information,
FORMATTED= option, 6-16 Online HELP files, =xv

Software Release Document, xv
FORMS, 1-6, 1-7
FORTRAN IV, definition of, 1-1
Forms Management System (FORMS),

16, 1-7 Free-formatted I/0, 6-32
(See also PRINT statement; READ
FORTRAN (FIN), statement; WRITE statement)

definition of, 1-1
-FRN compiler option, 9-11

FORTRAN 66,
definition of, 1-1 FIN,
compatibility of DO loops,
FORTRAN 77, 5-13
capabilities of, 1-2 to 1-4 definition of, 1-1
character set for, 2-2, 2-3
data types, 2-4 to 2-10 FIN constructs,
definition of, 1-1 elimination of dependence on,
Prime documents related to, c-9, C-10
xiii ENCODE and DECODE, C-8
Prime extensions to, 1-4 obsolete, -8, C-9
statements, 2-3, 2-4 optionally acceptable, C-4,
texts about, xi C-5
variables, 2-11 reimplemented, C-5 to C-7

unsupported, C€-7, C-8
FORTRAN 77, related documents,

Advanced Programmer's Guide, FIN programs, cornwverting to F77,
Xiv C-1 to C-9

Assembly Language Programmer's
Guide, xiv -FTN_ENTRY compiler option, 9-12

FMACS Primer, Xxiv

Fourth Edition, Update 2 X-8

FULL LIST statement, 3-24
-FULL, HEL.P compiler option, 9-12

-FULL_OPTIMIZE compiler option,
9-12
Function calls, 12-3
FUNCTION statement, 8-22, 8-23
Functions,
external, 8-22
generic, 8-3
intrinsic, 8-1 to 8-20, C-6
intrinsic (built-in), 8-1
intrinsic, notes for table of,
8-14 to 8-20
intrinsic, table of, 8-5 to
8-13
specific, 8-3
statement, 8-21, 8-22

G

G descriptor, 7-3, 7-8, 7-13
General editing, 7-6, 7-7
Generic functions, 8-3

Global mode, C-6

H

-HELP compiler option, 9-12
Hexadecimal Constants, 2-7b
Hexadecimal Descriptor, 7-4a
Hexadecimal editing, 7-4a

Hollerith constants, 2-2, 2-3,
2-5, 2-10

How to use this book, xii

X-9

INDEX

1

I descriptor, 7-3, 7-4

I/0 Control System, (See also
I0CS)
definition of, 6-1
files, 2-2

list, 7-1, 7-2

routines, 2-7

statement syntax, summary of,
6-40

statements, extra parentheses
in, &7

IF statement,

arithmetic-IF, 5-4

block-IF, 5-6 to 5-9

Block-IF considerations, 5-8

Block-IF execution, 5-8

Block-IF nesting, 5-8

Block-IF statementents in, 5-7

Block-IF structure, 5-6

logical-IF, 5-5

IMPLICIT statement, 3-3
Implied DO loop, 6-28
INCLUDE statement, 3-21

Increasing maximum record length,
66, 6-7

-INPUT compiler option, 9-12
Input groups, 6-35, 6-36

Input list, 6-27, 6-29
Input/Output, 12-3, C-7
Input/Output capabilities, 1-3
Input/Output Control System, 1-6

Input/output, data storage, and
file types, 6-1 to 6-40

INQUIRE statement options,
ACCESS=, 6-16, 6-19
BLANK=, 6-17, 6-20
DIRECT=, 6-16, 6-19
ERR=, 6-16, 6-18

Fourth Edition, Update 2

FORTRAN 77 Reference Guide

INQUIRE statement options

(continued)
EXIST=, 6-16, 6-18
FILEJL“' 6—llf 6_167 6_18

FORM=, 6-11, 6-16, 6-1°
FORMATTED=, 6-16, 6-19
IOSTAT=, 6-16, 6-18, 6-27
NAME=, 6-16, 6-18
NAMED=, 6-16, 6-18
NEXTREC-‘-, 6_17 r 6—20
NUMBER=, 6-16, 6-18
OPENED=, 6-16, 6-18
RECL=, 6-17, 6-20
SEQUENTIAL=, 6-16, 6-19
UNFORMATTED=, 6-16, 6-20
UNIT=, 6-16, 6-18, 6-27

SINSERT statement, 3-24

Insert statements, 2-4
Integer,
constant expression,
divides, 12-5, 12-6
editing, 7-4
expression,

2-2

2-2

INTEGER*2 data, 2-6, 2-7c, D-1

INTEGER*4 data, 2-6, 2-7c, D-3

Internal files, 6-5
-INTL and INTS compiler options,
9-13
—INTL compiler option, 2-7c¢
Intrinsic functions,
as arguments, 8-3, 8-4
by category, 8-2
description of,
Cc-6
notes for table of,
8-20
Sumary of F77, H-1
tables of, 8-5 to 8-13
use of, 8-1

6-1 to 6-20,

8-14 to

INTRINSIC statement, 3-19

-INTS compiler option, 2-7c

Fourth Edition, Update 2 X-10

INTS function, 2-7c

I0Cs, 1-6, 6-6, 12-3
IOSTAT option, 6-12

IOSTAT= option, 6-16, 6-27

|==

Key, 6-4
L
L descriptor, 7-8

-LCASE compiler option,
9-23

9_20 r

Libraries,

of subroutines,
shared, 6-6
unshared, 6-6

8-26

Library calls, inefficient, 12-5

Library routines, 2-7

Lire format, 2-3, 2-4

Linking and executing programs,
10-1 to 10-8
LIST statement, 3-24
List-directed I1/0,
defined, 6-32
delimiters, 6-32
repeat counts, 6-32, 6-33

-LISTING compiler option, 9-13

Listing control, C-5, C-6

Load sequence, 12-2, 12-3

Logical,

conversion, 2-17

data in assignment statement,

4-2

data, short, C-5

editing, 7-8

expressions, 2-15

operators, 2-14, 2-15
LOGICAL data, 2-6, 2-9
LOGICAL*1 data, 2-6, 2-9, D-1
LOGICAL*4 data, 2-6, 2-9, D-1
-LOGL compiler option, 2-9, 9-12
-I.0GS compiler option, 2-9, 9-12
Long integer argquments, 8-4

Long integers, 2-7, 2-7¢, 2-17,
c-4, C-5
Loops,
FIN compatibility of, 5-13
implied, 6-28
nested, 5-12

M

-MAIN compiler option, 9-14
Main Program, 2-18

-MAP compiler option, 9-14
-MAPWIDE compiler option, 9-14

-MAX GROWNTH_PERCENT compiler
option, 9-15

-MAX SUB_STATEMENTS_ INL INE
compiler option, 9-15

-MAXERRORS compiler option, 9-15

Memory allocation, 12-2, 12-3

X-11

MIDAS PLUS (Multiple Index Data
Access System), 1-7

Minus (=), 7-10

Mismatched record length on

Multidimensional arrays, 12-1,
12-2

Multiple Index Data Access System
(MIDAS PLUS), 1-7

N

NAME= option, 6-16
NAMED= option, 6-16
Namelist,
block, 3-22
description of, 3-22, 6-27,
6-29
errors when using, 6-38
input, 6-33, 6-34
output, 6-34
restrictions on, 6-39
variables, 3-22

NAMFI.IST statement, 3-22, 6-33
to 6-38

Nested DO loops, 5-12

-NESTING compiler option, 9-15,
9-16

NEXTREC= option, 6-17

NO LIST statement, 3-23
NO-LISTING, 9-14
-NO_ALLON_PRECONNECTION, 9-5
-NO_BIG, 9-5

-NO_BINARY, 9-6

-NO_D_STATEMENT, 9-8

Fourth Edition, Update 2

FORTRAN 77 Reference Guide

-NO_DCLVAR, 9-7
-NO_DEBUG, 9-7
-NO_DO1, 9-7
—-NO_ERRLIST, 9-9
-NO_ERRITY, 9-9
-NO_EXPLIST, 9-9
—NO_EXTENDED CHARACTER_SET,
-NO_FRN, 9-11
-NO_FTN_ENTRY, 9-12
-NO_MAP, 9-14
-NO_NESTING, 9-15
-NO_OFFSET, 9-16
-NO_OPTIMIZE, 12-3
-NO_OVERFLOW, 9-17
-NO_PBECB, 9-19
—NO_PRODUCTION, 9-20
-NO_RANGE, 9-20
—NO_STANDARD, 9-21

—NO_STATISTICS, 9-22

-NO_STORE_COWNER_FIELD, 9-22,

9-23

-NO_XREF, 9-23

Nonnumeric descriptors, 7-8 to

7-12
Number sign (#), 7-11

NUMBER= option, 6-16

Numeric descriptors, 7-3 to 7-7

Fourth Edition, Update 2

9,

O descriptor, 7-4a

Octal Constants, 2-7a

Octal Descriptor, 7-4a

Octal editing, 7-4a

-OFFSET compiler option, 9-16

Onr-unit, 1-8

OPEN statement options,
ACCESS=, 6-11, 6-13
ACTION=, 6-12, 6-14

ANYUNI'II:r 6""12; 6_
BIIAI‘IK=; 6"'11' 6_14

ERR= r 6_12 r 6_14
FILE=, 6-11, 6-13
FORM=, 6-11, 6-13

15

IOSTAT=, 6-12, 6-14

REC[F, 6_11, 6""'14

UNIT=, 6-11, 6-13

OPENED= option, 6-16

Opening a file, 6-7
Operands, types of,
Operations on a file,

Operators,
evaluation, 2-14

2-10 to 2-12

6-9

logical, 2-15, 2-16
order of evaluation, 2-14

relations, 2-15
table of, 2-16

types of, 2-13, 2-15

—OPTIMIZE compiler option, 9-16,

12-6

Optimizing programs,

Output list, 6-29

12-1 to

-OVERFLON compiler option, 9-17

to 9-19

B

P
PARAMETER statement, 3-16, 12-5
Parameters, 2-10

Parentheses, extra in I/0
statements, C-7

PAUSE statement, 5-17, C-7

-PBECB compiler option, 9-19,
9-20

Plus (+), 7-10

Pointer, 6-2
Positional editing, 7-15
Preconnection, 6-7

Prime ECS, 8-14
(See also Prime Extended
Character Set)

Prime Extended Character Set,

2-2, A-1 to A-15

collating sequence, 8-18, A-6

F77 Programming Considerations,
A-5

legal characters in FORTRAN,
2-2; 2-3

Special Meaning of Prime ECS
Characters, A-5

Specifying Prime ECS
Characters, A-2

Table A-1, A-7

Prime extensions,

ACTION= option, 6-11, 6-12,
6-14

alternate return statement
label ($), 8-30

comment format, 2-4

compatibility of DO loops with
FIN, 5-10

compiler control directives,
3-2, 3-23

COMPLEX*16 data, 2-9

data types, 2-5, 2-6

DO WHILE, 5-1la, 5-11b

END DO, 5-11b

X-13

INDEX

Prime extensions (continued)

equivalencing character data,
3-16

~EXTENDED CHARACTER-SET
compiler option, 9-11

F77, definition of, 1-2

FULL LIST statement, 3-10,
3-24

Hexadecimal constants, 2-7b

Hexadecimal edit descriptor,
7-4a

Hollerith constants, 2-2, 2-10

Hollerith edit descriptor, 7-9

INCLUDE statement, 3-21

initializing data in a type
statement, 3-2

SINSERT statement, 3-10, 3-24

insert statements, 2-4, 2-5

intialization of blank COMMDN,
3-16

legal characters, 2-2, 2-3

lire format, 2-3

list of, 1-4, 1-5

LIST statement, 3-10

-MAPWIDE compiler option, 9-13

-MAX GROWTH_PERCENT compiler
option, 9-11

-MAX SUB_STATEMENTS_INL INE
compiler option, 9-13

—-MAXERRORS compiler option,

9-13, 9-14
namelist directed I/0, 6-33 to
6-38

NAMEL IST statement, 3-10, 3-22

NO LIST statement, 3-10, 3-23

octal constants, 2-7a

octal constants in type
statements, 3-7

octal edit descriptor, 7-4a

OPEN statement RECL option for
sequential file access, 6-3

Prime Extended Character Set,
A-1 to A-15

program unit names, 2-18

Q edit descriptor, 7-6

REAL*16 data, 2-8

referencing PMA, 1-6

shifting or truncation of bits,
8-4

variable names, 2-11

variable names in type
statements, 3-19

Fourth Edition, Update 2

FORTRAN 77 Reference Guide

PRISAM (Prime's Recoverable
Indexed Sequential Access
Method), 1-7

-PRODUCTION compiler option,
9-20

Program compatibility, C-4 to
c-9

Program composition, 2-18, 2-19
Program conversion,
referencing restrictions, C-3
steps for, C-2
three degrees of, C-3
PROGRAM statement, 3-2
Program unit, 2-2, 2-18

Programming examples, F77, B-1
to B-12

Programs, suggestions for
improving, 12-1 to 12-7

Q
Q descriptor, 7-3, 7-6, 7-13

R
-RANGE compiler option, 9-20
READ statement, 6-26 to 6-28,
Unggirmatted I/0, 6-32
REAL data, 2-6, 2-8
Real editing,
Exponential, 7-5
Nonexponential, 7-4
REAL*16 data, 2-6, 2-8, D-4
REAL*16 editing, 7-6

REAL.*4 data, D-3

Fourth Edition, Update 2

REAT.I*B data' 2_6' 2'—8' D—4
Record#, 6-27

Records,

definition of, 6-2

endfile, 6-2

formatted, 6-2

increasing maximum length,
66, 6-7

length mismatch on output,
6-29, 6-30

lengths, fixed, 6-3

lengths, variable, 6-3

skipping, 7-16

unformatted, 6-2

Recursion,
in functions, 8-27
in subroutines, 8-27

Referencing,
arrays, 2-12
functions, 8-22, 8-23
intrinsic functions, 8-3
seconday entry points, 8-28
statement functions, 8-21
subroutines, 8-24, 8-25
Relational expressions, 2-15
Repeat counts, 6-32, 6-33
Restrictions on F77, 1-5
RESUME command, 10-8

8-30

REWIND statement, 6-23
Routines,
library, 2-7c

Runfiles, EPF, 10-1 to 10-8

s

S descripktor, 7-14

SAM files, 6-3 to 6-5

-SAVE compiler option, 9-20

SAVE statement, 3-19

Scale factors, 7-13

Search Rules Facility,
Establishing Search Rules, G-1
Using [referencing dir], G-3

Using Search Rules, G-3

Secondary entry points, 8-28,

8-29

Segment, 2-2

Sequential access file, 6-3 to
6-5

SEQUENTIAL= option, 6-16
Shared libraries, 6-6
Short integer arguments, 8-4

Short integers, 2-7c¢, 2-17, C-4,
C-5

SHORTCALL examples, E-1 to E-5
IMODE, E-4
VMODE, E-1
SHORTCALIL, Statement, 3-18
Sign control editing, 7-14
—-SILENT compiler option, 9-21
Skipping records, 7-16

Slash edit-control descriptor,
c-7

=SOURCE compiler option, 9-21

Source Level Debugger (DBG),
11-1 to 11-11

X-15

INDEX

SP descriptor, 7-14

-SPACE compiler option, 9-21
Space skipping, 7-10, 7-11
Specific functions, 8-3

Specification statements, 3-1 to
3-24

-SPO option, C-8

SS descriptor, 7-14

—STANDARD compiler option, 9-21
Statement functions, 8-21, 8-22
statement labels, 2-4
Statement order in F77, 2-20

Statements,

ASSIGN, 4-6

BACKSPACE, 6-21, 6-22

BLOCK DATA, 3-20, 8-27

CALL, 8-24

CLOSE, 6-15

coMMON, 3-11, 3-12

compiler control directives,
3-23

CONTINUE, 5-16

DATA, 3-15, 3-16, 12-5

data transfer, 6-25 to 6-33

device control, 6-21 to 6-24

DIMENSION, 3-9

m' 5—9

DO WHILE, 5-1la, 5-11b

E}I.D' 5—18

END DO, 5-11b

ENDFILE, 6-24

ENTRY, 8-28

EQUIVALENCE, 3-13, 3-14

EXTERNAL, 3-17

file control, 6-11 to 6-20

FORMAT, 7-1 to 7-16

FULL LIST, 3-24

FUNCTION, 8-22, 8-23

functions and subroutines,
12-5

GO TO; 5_3

I/0 syntax, summary of, 6-40

IF, 5-4 to 5-9

Fourth Edition, Update 2

FORTRAN 77 Reference Guide

Statements (continued)
IMPLICIT, 3-3
INCLUDE, 3-21
INQUIRE, 6-16 to 6-20
INTRINSIC, 3-19
LIST, 3-24
NAMELIST, 3-22, 6-33 to 6-38
NO LIST, 3-23
OPEN, 6-11 to 6-14
PARAMETER, 3-16, 12-5
PAUSE, 5-17, C-7
PRHQT; 6"25, 6_‘3.1' 7_1
PROGRAM, 3-2
READ, 6-26 to 6-28, 7-1
RETURN, 8-24, 8-29, 8-30
REWIND, 6-23
SAVE, 3-19
sequence, 12-4, 12-5
SHORTCALL, 3-18
SIOP' 5"'17, C_7
storage allocation, 3-11, 3-12
SUBRAUTINE, 8-24, 8-25
summary of file operations,
6-9
syntax of, 2-3, 2-4
table of compilation directive
syntax, 3-10
table of specification syntax,
3-10
type statements, 3-4
WRITE, 6-25, 6-29, 6-30, 7-1
Static storage default, C-5
—-STATISTICS compiler option,
9-20, 9-22

STATUS= option, 6-11

STOP statement, 5-17, C-7

Storage,
dynamic,
of data,
static,

c-5
6-1 to 6-7
-5

Storage allocation statements,
COMMON, 3-11 to 3-13
FQUIVALENCE, 3-14
SAVE, 3-19

~STORE._OANER_FIELD compiler
option, 9-22

Fourth Edition, Update 2 X-16

Subprogram arguments,
adjustable array dimensions,
8-32
adjustable character arguments,
8-31
adjustable character functions,
8-31
adjustable subprogram elements,
8-31
assumed-size arrays, 8-32
Subprograms, 2-18
as arguments, 8-34, 8-35
block data, 8-27
capabilities of,
categories of,
definition of,
functions, 8-22

1=3
8-1
2""2 r 8'—1

SQUBRQUTINE statement, 8-24, 8-25
Subroutines,
libraries of, 8-26
number of arguments, 8-27
referencing, 8-24, 8-25

I

T descriptor, 7-15, 7-16

Textbooks on FORTRAN 77, xii

-TIME compiler option, 9-23,
12-6, 12-7

TL, descriptor, 7-15, 7-16

TR descriptor, 7-15, 7-16
Type conversion,
arithmetic, 2-17
logical, 2-17
Type Statements, 3-4
character, 3-6
numeric, 3-4, 3-5

u

Uncompressed format, 6-3

INDEX

Unconditonal GO TO statements, Z
5_2' 5_3
Z descriptor, 7-4a
Unformatted I/O (See free-format
I/0; PRINT statement; READ zed (2), 7-11
statement; WRITE statement)
Unformatted record, 6-2
UNFORMATTED= option, 6-16
Unit#, 6-26
Unrepresentable values, 6-30
Unshared libraries, 6-6
-UPCASE compiler option, 9-23
Utility systems,
DBMS, 1-6
FORMS, 1-6

MIDAS PLUS, 1-6
PRISAM, 1-6

v
Variable-length records, 6-3

Variables, 2-11

w
WRITE statement, 6-25, 6-29,

6-30
Unformatted 1/0, 6-32

X

X descriptor, 7-8

-XREF compiler option, 9-23

X-17 Fourth Edition, Update 2

SURVEY

]

READER RESPFONSE FORM

DOC4029-41.A FORTRAN 77 Reference Guide Fourth Edition

Your feedback will help us continue to improve the quality, accuracy,
and orqanization of our user publications.
1. How do you rate the document for overall usefulness?
—_excellent ___very good __good __ fair ___ poor
2. Please rate the document in the following areas:
Readability: __ hard to understand ___ average __ very clear
Technical level: __ too simple __ about right __ too technical
Technical accuracy: ___poor ___ average ___very good
Examples: __ too many ___about right ___ too few
Illustrations: too many ___about right ___ too few
3. What features did you find most useful?
4. What faults or errors gave you problems?
Would you like to be on a mailing list for Prime's current

documentation catalog and ordering information? yes no

Name : Position:

Company :

Address:

Zip:

NO POSTAGE
NECESSARY

IF MAILED
IN THE
UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL

Postage will be paid by:

PRIME

Attention: Technical Publications
Bldg 10B
Prime Park, Natick, Ma. 01760

	Front Cover
	Title Page
	i
	Copyright
	ii
	Printing History
	iii
	Contents
	v
	vi
	vii
	viii
	ix
	x
	xi
	About This Book
	xiii
	xiv
	xv
	xvi
	xvii
	xviii
	xix
	xx
	Part I
	Overview
	Chapter 1
	Introduction To F77
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	Chapter 2
	FORTRAN 77 Terms and Concepts
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	Part II
	Prime F77 Language Reference
	Chapter 3
	Specification Statements
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	Chapter 4
	Assignment Statements
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	Chapter 5
	Control Statements
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	Chapter 6
	Input/Output Statements, Data Storage, and File Types
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	Chapter 7
	FORMAT Statements
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	Chapter 8
	Subroutines and Functions
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	Part III
	Working With Prime F77
	Chapter 9
	Compiling Your Program
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	9-22
	9-23
	9-24
	9-25
	9-26
	9-27
	9-28
	Chapter 10
	Linking and Executing Your Program
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	Cja[er 11
	Finding and Correcting Runtime Errors
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	11-7
	11-8
	11-9
	11-10
	11-11
	Chapter 12
	Optimizing F77 Programs
	12-1
	12-2
	12-3
	12-4
	12-5
	12-6
	12-7
	Appendixes
	Appendix A
	Prime Extended Character Set
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	Appendix B
	F77 Programming Examples
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	B-9
	B-10
	B-11
	B-12
	Appendix C
	Converting FTN Programs To F77
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-7
	C-8
	C-9
	Appendix D
	Memory Formats for F77
	D-1
	D-2
	D-3
	D-4
	D-5
	D-6
	Appendix E
	SHORTCALL Examples
	E-1
	E-2
	E-3
	E-4
	E-5
	Appendix G
	The Search Rules Facility
	G-1
	G-2
	G-3
	Appendix H
	Alphabetic Summary of F77 Intrinsic Functions
	H-1
	H-2
	H-3
	H-4
	H-5
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	X-9
	X-10
	X-11
	X-12
	X-13
	X-14
	X-15
	X-16
	X-17
	Survey
	
	

